Accesso libero

Oscillation Tests for Fractional Difference Equations

,  e   
25 gen 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

In this paper, we study the oscillatory behavior of solutions of the fractional difference equation of the form

Δ(r(t)g(Δαx(t)))+p(t)f(s=t0t1+α(ts1)(α)x(s))=0,t𝕅t0+1α,$$\Delta \left( {r\left( t \right)g\left( {{\Delta ^\alpha }x(t)} \right)} \right) + p(t)f\left( {\sum\limits_{s = {t_0}}^{t - 1 + \alpha } {{{(t - s - 1)}^{( - \alpha )}}x(s)} } \right) = 0, & t \in {_{{t_0} + 1 - \alpha }},$$

where Δα denotes the Riemann-Liouville fractional difference operator of order α, 0 < α ≤ 1, ℕt0+1−α={t0+1−αt0+2−α…}, t0 > 0 and γ > 0 is a quotient of odd positive integers. We establish some oscillatory criteria for the above equation, using the Riccati transformation and Hardy type inequalities. Examples are provided to illustrate the theoretical results.

Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale