This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Lammering T, Stumpf E. Integration of aircraft systems into conceptual design synthesis. 2014.LammeringTStumpfE.Integration of aircraft systems into conceptual design synthesis. 2014.Search in Google Scholar
Mitrakhovych MM. Skladni tekhnichni systemy. Systemne matematychne zabezpechennya proektnykh rishen [Complex technical systems. Systematic mathematical support for design decisions]. Instytut Problem Matematychnykh Mashyn i System. Kyiv: “Nichlava”. 1998. [in Ukrainian]MitrakhovychMM.Skladni tekhnichni systemy. Systemne matematychne zabezpechennya proektnykh rishen [Complex technical systems. Systematic mathematical support for design decisions]. Instytut Problem Matematychnykh Mashyn i System. Kyiv: “Nichlava”. 1998. [in Ukrainian]Search in Google Scholar
Eger S.M, Myshin VF, Lyseitsev NK et al. Proyektirovaniye samoletov: Uchebnik dlya vuzov. [Airplane project: Handbook for universities]. Mashinostroyeniye. 1983. [in Russian]EgerS.MMyshinVFLyseitsevNKProyektirovaniye samoletov: Uchebnik dlya vuzov. [Airplane project: Handbook for universities]. Mashinostroyeniye. 1983. [in Russian]Search in Google Scholar
Torenbik E. Proyektirovaniye dozvukovykh samoletov. [Design of subsonic aircraft]. Mashinostroyeniye. 1983:647. [in Russian]TorenbikE.Proyektirovaniye dozvukovykh samoletov. [Design of subsonic aircraft]. Mashinostroyeniye. 1983:647. [in Russian]Search in Google Scholar
Akimov VM, Bakulev VI et al. Teoriya i raschet vozdushno-reaktivnykh dvigateley [Theory and calculations of air-breathing engines]. Ed. S.M. Shlyakhtenko. Mashinostroyeniye. 1987: 568. [in Russian]AkimovVMBakulevVITeoriya i raschet vozdushno-reaktivnykh dvigateley [Theory and calculations of air-breathing engines]. Ed. ShlyakhtenkoS.M.. Mashinostroyeniye. 1987: 568. [in Russian]Search in Google Scholar
Loginov VV. Analiz primeneniya silovykh ustanovok na samoletakh transportnoy aviatsii [Analysis of the use of power plants in transport aircraft]. VV. Loginov, Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel’nykh apparatov. [Design and manufacturing issues of aerospace structures.]. Kharkív: NAU named after M.Ê. Zhukovs’kogo “KhAI” 2006;1(44):74–78. [in Ukrainian]LoginovVV.Analiz primeneniya silovykh ustanovok na samoletakh transportnoy aviatsii [Analysis of the use of power plants in transport aircraft]. VV. Loginov, Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel’nykh apparatov. [Design and manufacturing issues of aerospace structures.]. Kharkív: NAU named after M.Ê. Zhukovs’kogo “KhAI” 2006;1(44):74–78. [in Ukrainian]Search in Google Scholar
Haran K, Madavan N, O’Connell TC, editors. Electrified Aircraft Propulsion: Powering the Future of Air Transportation. Cambridge: Cambridge University Press; 2021. https://doi.org/10.1017/9781108297684.HaranKMadavanNO’ConnellTC, editors. Electrified Aircraft Propulsion: Powering the Future of Air Transportation. Cambridge: Cambridge University Press; 2021. https://doi.org/10.1017/9781108297684.Search in Google Scholar
Pornet C, Isikveren AT. Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences. 2015;79:114–135.PornetCIsikverenAT.Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences. 2015;79:114–135.Search in Google Scholar
Pornet C. Conceptual Design Methods for Sizing and Performance of Hybrid-Electric Transport Aircraft. Germany: Technischen Universität München; 2018. https://mediatum.ub.tum.de/doc/1399547/document.pdfPornetC.Conceptual Design Methods for Sizing and Performance of Hybrid-Electric Transport Aircraft. Germany: Technischen Universität München; 2018. https://mediatum.ub.tum.de/doc/1399547/document.pdfSearch in Google Scholar
Gil AA, Silva HL. Hybrid-Electric Aircraft: Conceptual Design, Structural and Aeroelastic Analyses. 2017.GilAASilvaHL.Hybrid-Electric Aircraft: Conceptual Design, Structural and Aeroelastic Analyses. 2017.Search in Google Scholar
Commercial engines. Accessed 14.10.2024. https://www.prattwhitney.com/en/sustainability/smarter-technologies.Commercial engines. Accessed 14.10.2024. https://www.prattwhitney.com/en/sustainability/smarter-technologies.Search in Google Scholar
Electrified Aircraft. Accessed 14.10.2023. https://www.collinsaerospace.com/what-we-do/capabilities/electrified-aircraft.Electrified Aircraft. Accessed 14.10.2023. https://www.collinsaerospace.com/what-we-do/capabilities/electrified-aircraft.Search in Google Scholar
Decarbonization. Accessed 14.10.2023. https://www.safran-group.com/decarbonization.Decarbonization. Accessed 14.10.2023. https://www.safran-group.com/decarbonization1.Search in Google Scholar
A Guide to Understanding Battery Specifications; MIT Electric Vehicle Team: December 2008. Accessed 15.01.2020. Available online: https://web.mit.edu/evt/summary_battery_specifications.pdfA Guide to Understanding Battery Specifications; MIT Electric Vehicle Team: December2008. Accessed 15.01.2020. Available online: https://web.mit.edu/evt/summary_battery_specifications.pdfSearch in Google Scholar
Vision. https://www.h2fly.de/vision. Accessed 20.04.2023.Vision. https://www.h2fly.de/vision. Accessed 20.04.2023.Search in Google Scholar
Hydrogen & Fuel Cells. Research, development, and innovation to advance hydrogen and fuel cells. https://www.pnnl.gov/hydrogen-fuel-cells. Accessed 25.03.2023.Hydrogen & Fuel Cells. Research, development, and innovation to advance hydrogen and fuel cells. https://www.pnnl.gov/hydrogen-fuel-cells. Accessed 25.03.2023.Search in Google Scholar
Abu Salem K, Palaia G, Quarta AA. Review of hybrid-electric aircraft technologies and designs: Critical analysis and novel solutions. Progress in Aerospace Sciences. 2023 Aug;141:100924. Available from: https://doi.org/10.1016/j.paerosci.2023.100924Abu SalemKPalaiaGQuartaAA.Review of hybrid-electric aircraft technologies and designs: Critical analysis and novel solutions. Progress in Aerospace Sciences. 2023Aug;141:100924. Available from: https://doi.org/10.1016/j.paerosci.2023.100924Search in Google Scholar
Sahoo S, Zhao X, Kyprianidis K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace. 2020 Apr 13;7(4):44. Available from: https://doi.org/10.3390/aerospace7040044SahooSZhaoXKyprianidisK.A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace. 2020Apr13;7(4):44. Available from: https://doi.org/10.3390/aerospace7040044Search in Google Scholar
Palaia G, Abu Salem K, Quarta AA. Parametric Analysis for Hybrid–Electric Regional Aircraft Conceptual Design and Development. Applied Sciences. 2023 Oct 9;13(19):11113. Available from: https://doi.org/10.3390/app131911113PalaiaGAbu SalemKQuartaAA.Parametric Analysis for Hybrid–Electric Regional Aircraft Conceptual Design and Development. Applied Sciences. 2023Oct9;13(19):11113. Available from: https://doi.org/10.3390/app131911113Search in Google Scholar
Isikveren AT, Kaiser S, Pornet C, Vratny PC. Pre-design strategies and sizing techniques for dual-energy aircraft. Aircraft Engineering and Aerospace Technology. 2014 Sep 30;86(6):525–542. Available from: https://doi.org/10.1108/aeat-08-2014-0122IsikverenATKaiserSPornetCVratnyPC.Pre-design strategies and sizing techniques for dual-energy aircraft. Aircraft Engineering and Aerospace Technology. 2014Sep30;86(6):525–542. Available from: https://doi.org/10.1108/aeat-08-2014-0122Search in Google Scholar
Moore MD, Fredericks B. Misconceptions of Electric Aircraft and their Emerging Aviation Markets. 52nd Aerosp Sci Meet 13 17 January 2014 National Harb Md. 2014. AIAA 2014-0535. https://doi.org/10.2514/6.2014-0535.MooreMDFredericksB.Misconceptions of Electric Aircraft and their Emerging Aviation Markets. 52nd Aerosp Sci Meet 13 17 January 2014 National Harb Md. 2014. AIAA 2014-0535. https://doi.org/10.2514/6.2014-0535.Search in Google Scholar
Pornet C. Hybrid and Universally-Electric Aircraft Concepts. AccessScience, McGraw-Hill Yearbook of Sciences and Technology (McGraw-Hill Education, 2014), http://dx.doi.org/10.1036/1097-8542.YB150553.PornetC.Hybrid and Universally-Electric Aircraft Concepts. AccessScience, McGraw-Hill Yearbook of Sciences and Technology (McGraw-Hill Education, 2014), http://dx.doi.org/10.1036/1097-8542.YB150553.Search in Google Scholar
Portnikov BA. Kriterii tekhniko-ekonomicheskoy effektivnosti aviatsionnoy spetsializirovannoy sistemy [Performance and economic criteria for a specialized operating system]. Vestnik Orenburgskogo Gosudarstvennogo Universiteta. 2007(5):171–180. [in Russian]PortnikovBA.Kriterii tekhniko-ekonomicheskoy effektivnosti aviatsionnoy spetsializirovannoy sistemy [Performance and economic criteria for a specialized operating system]. Vestnik Orenburgskogo Gosudarstvennogo Universiteta. 2007(5):171–180. [in Russian]Search in Google Scholar
Levitskiy SV, Levitskaya YeV. Metodika otsenki transportnoy effektivnosti magistral’nogo passazhirskogo samoleta [Methodology for assessing the efficiency of long-range passenger aircraft transport]. Nauchnyy Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta Grazhdanskoy Aviatsii. 2014;(205):99–106. [in Russian]LevitskiySVLevitskayaYeV.Metodika otsenki transportnoy effektivnosti magistral’nogo passazhirskogo samoleta [Methodology for assessing the efficiency of long-range passenger aircraft transport]. Nauchnyy Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta Grazhdanskoy Aviatsii. 2014;(205):99–106. [in Russian]Search in Google Scholar
Van der Velden A. Aircraft Economy for Design Tradeoffs. In: Sobieczky H, editor. New Design Concepts for High Speed Air Transport. International Centre for Mechanical Sciences, Vol. 366.Vienna: Springer; 1997. Available from: https://doi.org/10.1007/978-3-7091-2658-5_2Van der VeldenA.Aircraft Economy for Design Tradeoffs. In: SobieczkyH, editor. New Design Concepts for High Speed Air Transport. International Centre for Mechanical Sciences, Vol. 366. Vienna: Springer; 1997. Available from: https://doi.org/10.1007/978-3-7091-2658-5_2Search in Google Scholar
Seitz A. Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design. Germany: Technischen Universität München; 2012.SeitzA.Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design. Germany: Technischen Universität München; 2012.Search in Google Scholar
Kappler G. An integrated economic evaluation of preliminary aero-engine design concepts. Aachen: Institut fur Luftfahrtantriebe der Universitat Stuttgart; 2013.KapplerG.An integrated economic evaluation of preliminary aero-engine design concepts. Aachen: Institut fur Luftfahrtantriebe der Universitat Stuttgart; 2013.Search in Google Scholar
Anderson JD. Fundamentals of aerodynamics. 6th ed. McGraw-Hill; 2016.AndersonJD.Fundamentals of aerodynamics. 6th ed. McGraw-Hill; 2016.Search in Google Scholar
Statisticheskiye dannyye zarubezhnykh passazhirskikh samoletov (po dannym inostrannoy pechati) [Statistics of foreign passenger aircraft (according to foreign press)]. Obzor TSAGI. 1981;(601):240. [in Russian]Statisticheskiye dannyye zarubezhnykh passazhirskikh samoletov (po dannym inostrannoy pechati) [Statistics of foreign passenger aircraft (according to foreign press)]. Obzor TSAGI. 1981;(601):240. [in Russian]Search in Google Scholar
Benzakein MJ. What does the future bring? A look at technologies for commercial aircraft in the years 2035–2050. Propulsion and Power Research. 2014;3(4):165–174.BenzakeinMJ.What does the future bring? A look at technologies for commercial aircraft in the years 2035–2050. Propulsion and Power Research. 2014;3(4):165–174.Search in Google Scholar