INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 17 mar 2023
Pagine: 67 - 85
Ricevuto: 30 nov 2022
Accettato: 09 feb 2023
DOI: https://doi.org/10.2478/tar-2023-0006
Parole chiave
© 2023 Małgorzata Wojtas et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





Figure 1.
![Propeller thrust test stand – visualisation [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=1e581c8e36e3523e9aa14e5e2425fb957105474a92e6ff26c42159cd5c2ffb4b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.
![The principle of measuring the propeller thrust on the presented stand [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=3753a65a794d139286141dcd9f72336db3bb8fb8026d3a49c71a16e169b88483&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3.
![Map of reduced stress according to the Huber-Von-Mises hypothesis with a point measurement in the vicinity of the calculated transverse opening [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=a0f63894d2e380f83ae3a643457ff6cde70c82db46092d7294d5e0367220aafb&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4.
![Structural calculation: (top) mounting plate model; (bottom) map of the mounting plate effort according to the Huber-Von-Mises hypothesis [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=79813eeca7213e4cd66efb3331d1e0e852af26c4ff7039238178069dbfab924f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5.
![Propeller thrust test stand – electrical diagram [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=1433fead081e1aaa9ab7bb1b46d0ebf6a4c33127bb430c4b0e9678ece682c003&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6.
![Dynamic model – block diagram [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=49a4b5cbf2e8f21cf114f710f4f38a848e9849f1ba91fe82c1d3342a1ec1283a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7.
![Construction of regulators in the MATLAB Simulink program [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=f77db2b342acd1cc1314ef98f55445e181233044faf1dcb72c4188b16b242fdf&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8.
![Propeller model with moments of inertia [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_008.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=de4b5034d221812bd3d35681a8fae0a82eb18f83bb3eb72dbf741bdc20817c3e&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 9.
![Model of the entire system built in MATLAB Simulink [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=83783a7ce5a7915ec9cc1cc5aeff52ff05d04a5616fd0fbec259d1de993cb518&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 10.

Figure 11.
![Course of step excitations for: 1st cycle (left) and 2nd cycle (right) [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=bcaafb8657152021ee1eba0f2623d5bd776954bf6404d0a970d83342fa9266a5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 12.
![Summary of Aerobat propeller rotational speed and torque in the 1st cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=2de22f572adbed660324294b7f24b2182cc18d3c95d9c7b66f665cbb7af86326&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 13.
![Summary of Aerobat propeller rotational speed and torque in the 2nd cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=b367475bd1600775e7e1cfa50808edf7538fd456dcbf91cb9a803fee6af2da96&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14.
![Comparison of actual results with the simulation results for Aerobat propeller [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_014.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=768b3d7a76b1c22643dda83597b7400b6e869ff21d692c4c28ac42a564d478dd&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15.
![Course of step excitations for 1st cycle (left) and 2nd cycle (right) [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_015.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=d6343641e84448861976ebafa7d59aa675663457cbcace432690275e2077f1d5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 16.
![Summary of Łukasiewicz – Institute of Aviation propeller rotational speed and torque in the 1st cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_016.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=23440c43c7d00a19a57c6d31dafe93fe487e059443bee14a78d3622bcde196c8&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 17.
![Summary of Łukasiewicz – Institute of Aviation propeller rotational speed and torque in the 2nd cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_017.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=f581671c4ac76845a5483b3b831a49a608ddedf351c0ebe9fe216f4b762a9787&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 18.
![Comparison of actual results with the simulation results for the carbon composite Łukasiewicz – Institute of Aviation propeller [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250909%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250909T133320Z&X-Amz-Expires=3600&X-Amz-Signature=9f23e3fc9550769ad15be4e6caa2a895cf068f4cbcc29ea01b28fc3cb23df4de&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Test stand overview [8–10]_
Test Stand | Thrust | Torque | Propeller diameter | Electric parameters | RPM |
---|---|---|---|---|---|
LY-70KGF Thrust Stand and Dynamometer |
±70 daN | ±50 Nm | Max ~ 1.52 m | Current: 0–300 A |
60,000 – 150,000 RPM |
WF-CO-30KGF Coaxial Thrust Stand |
±30 daN | ±20 Nm | Max ~1.00 m | Current: 0–150 A |
60,000 – 150,000 RPM |
Series 1780 Test Stand |
±75 daN | ±48 Nm | Max ~1.77 m | Current: 0–500 A |
100,000 RPM |
Modular Stand for testing aircraft electric propulsion systems |
±225 daN | ±200 Nm | Max ~1.77 m | N/A | 20,000 RPM |
Rotor/propeller test stand in Hover |
±3,000 daN | ±4,800 Nm | Max ~10 m | Electric power: 315 kW | Min. 126 RPM, max. 1,500 RPM |
Initial parameters, step function of the torque and the corresponding currents - 1st cycle_
No. | Starting point - torque (Nm) | RMS current corresponding to torque (A) | Ending point - torque (Nm) | RMS current corresponding to torque (A) |
---|---|---|---|---|
1 | 8.5 | 14.2 | ||
2 | 6.0 | 10.0 | 10.0 | 16.7 |
3 | 14.0 | 23.3 | ||
4 | 25.5 | 42.5 | ||
5 | 23.0 | 38.3 | 27.0 | 45.0 |
6 | 31.0 | 51.7 | ||
7 | 35.5 | 59.2 | ||
8 | 33.0 | 55.0 | 37.0 | 61.7 |
9 | 41.0 | 68.3 | ||
10 | 47.5 | 79.2 | ||
11 | 45.0 | 75.0 | 49.0 | 81.7 |
12 | 53.0 | 88.3 | ||
13 | 60.5 | 100.8 | ||
14 | 58.0 | 96.7 | 62.0 | 103.3 |
15 | 66.0 | 110.0 | ||
16 | 70.5 | 117.5 | ||
17 | 68.0 | 113.3 | 72.0 | 120.0 |
18 | 76.0 | 126.7 |
Initial parameters, step function of the torque and the corresponding currents — 2nd cycle_
No. | Starting point - torque (Nm) | RMS current corresponding to torque (A) | Ending point - torque (Nm) | RMS current corresponding to torque (A) |
---|---|---|---|---|
1 | 6.0 | 10.0 | 76.0 | 126.7 |
2 | 23.0 | 38.3 | ||
3 | 33.0 | 55.0 | ||
4 | 45.0 | 75.0 | ||
5 | 58.0 | 96.7 | ||
6 | 68.0 | 113.3 |
Comparison of actual results with the simulation results for the same RMS currents, Aerobat propeller_
Experimental research | Numerical model research | |||
---|---|---|---|---|
Current (A) | Torque (Nm) | Rotational speed (RPM) | Torque (Nm) | Rotational speed (RPM) |
3.86 | 2.4 | 640.0 | 2.3 | 720.0 |
8.76 | 5.3 | 1,065.0 | 5.3 | 1,087.0 |
17.45 | 10.7 | 1,550.0 | 10.5 | 1,534.0 |
29.08 | 18.0 | 2,030.0 | 17.5 | 1,980.0 |
36.80 | 22.7 | 2,280.0 | 22.1 | 2,226.0 |
44.70 | 27.8 | 2,520.0 | 26.8 | 2,456.0 |
53.6 | 33.1 | 2,755.0 | 32.2 | 2,688.0 |
66.5 | 40.5 | 3,020.0 | 39.9 | 2,995.0 |
Adjustment time for Łukasiewicz — Institute of Aviation propeller — 2nd cycle_
Lp. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
---|---|---|---|
1 | 6.0 | 76.0 | 3.4 |
2 | 23.0 | 76.0 | 3.1 |
3 | 33.0 | 76.0 | 3.0 |
4 | 45.0 | 76.0 | 2.9 |
5 | 58.0 | 76.0 | 2.8 |
6 | 68.0 | 76.0 | 2.2 |
Comparison between the actual results and the simulation results for the same RMS currents, for the carbon composite Łukasiewicz — Institute of Aviation propeller_
Experimental research | Numerical model research | |||
---|---|---|---|---|
Present current (A) | Torque (Nm) | Rotational speed (RPM) | Torque (Nm) | Rotational speed (RPM) |
11.09 | 7.62 | 565.0 | 6.65 | 540.0 |
23.99 | 15.35 | 825.0 | 14.39 | 794.0 |
38.96 | 24.40 | 1,045.0 | 23.38 | 1,011.0 |
54.32 | 33.37 | 1,215.0 | 32.69 | 1,195.0 |
63.99 | 38.73 | 1,305.0 | 38.39 | 1,296.0 |
75.37 | 45.15 | 1,405.0 | 45.22 | 1,406.0 |
89.29 | 52.30 | 1,515.0 | 53.57 | 1,531.0 |
103.81 | 59.35 | 1,615.0 | 62.29 | 1,651.0 |
121.99 | 66.91 | 1,715.0 | 73.19 | 1,789.0 |
137.16 | 72.61 | 1,770.0 | 82.30 | 1,897.0 |
Moments of inertia of elements included in the model_
I ( |
|
---|---|
The knot from the engine to the propeller attachment | 13,503 |
Propeller mounting hub | 4,350 |
Propeller | 246,083 |
Adjustment time for Aerobat propeller — 1st cycle_
No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
---|---|---|---|
1 | 6.0 | 8.5 | 3.9 |
2 | 10.0 | 3.9 | |
3 | 14.0 | 3.9 | |
4 | 23.0 | 25.5 | 2.5 |
5 | 27.0 | 2.5 | |
6 | 31.0 | 2.5 | |
7 | 33.0 | 35.5 | 2.1 |
8 | 37.0 | 2.1 | |
9 | 41.0 | 2.1 | |
10 | 45.0 | 47.5 | 2.0 |
11 | 49.0 | 2.0 | |
12 | 53.0 | 2.0 |
Adjustment time for Łukasiewicz — Institute of Aviation propeller — 1st cycle_
No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
---|---|---|---|
1 | 8.5 | 6.0 | |
2 | 6 | 10.0 | 6.0 |
3 | 14.0 | 6.0 | |
4 | 25.5 | 4.7 | |
5 | 23 | 27.0 | 4.5 |
6 | 31.0 | 4.5 | |
7 | 35.5 | 3.7 | |
8 | 33 | 37.0 | 3.7 |
9 | 41.0 | 3.7 | |
10 | 47.5 | 3.0 | |
11 | 45 | 49.0 | 3.0 |
12 | 53.0 | 3.0 | |
13 | 60.5 | 2.8 | |
14 | 58 | 62.0 | 2.7 |
15 | 66.0 | 2.7 | |
16 | 70.5 | 2.2 | |
17 | 68 | 72.0 | 2.2 |
18 | 76.0 | 2.2 |
Adjustment time for Aerobat propeller — 2nd cycle_
No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
---|---|---|---|
1 | 6.0 | 53.0 | 2.5 |
2 | 16.0 | 53.0 | 2.4 |
3 | 23.0 | 53.0 | 2.3 |
4 | 32.0 | 53.0 | 2.3 |
5 | 40.0 | 53.0 | 2.2 |
6 | 47.0 | 53.0 | 2.0 |