Accesso libero

The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 2013; 58(8):1021-8.10.1016/j.archoralbio.2013.02.01423518236 Search in Google Scholar

2. Chen Y, Xu J, Huang Z, et al. An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-shock-wave-treated Bone Marrow Mesenchymal Stem Cells (BMSCs). Sci Rep 2017;7:44130.10.1038/srep44130534104028272494 Search in Google Scholar

3. Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. Tissueengineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J Zhejiang Univ Sci B 2017;18(11):963-76.10.1631/jzus.B1600412569631529119734 Search in Google Scholar

4. Urban IA, Monje A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac Surg Clin North Am 2019;31(2):331-8.10.1016/j.coms.2019.01.00330947850 Search in Google Scholar

5. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019;4:271-92.10.1016/j.bioactmat.2019.10.005682909831709311 Search in Google Scholar

6. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011;9:66.10.1186/1741-7015-9-66312371421627784 Search in Google Scholar

7. Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue engineering. Biotechnol Prog 2017; 33(3):590-611.10.1002/btpr.246928371447 Search in Google Scholar

8. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 2017;28(16):1797-825.10.1080/09205063.2017.135467428707508 Search in Google Scholar

9. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014;14(1):15-56.10.1166/jnn.2014.9127399717524730250 Search in Google Scholar

10. Huawei Q, Hongya F, Zhenyu H, Yang S. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 2019;9:26252-62.10.1039/C9RA05214C Search in Google Scholar

11. Stevens MM. Biomaterials for bone tissue engineering. Mater Today 2008;11(5):18-25.10.1016/S1369-7021(08)70086-5 Search in Google Scholar

12. Khan WS, Longo UG, Adesida A, Denaro V. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int 2012;2012: 403170.10.1155/2012/403170332823522550506 Search in Google Scholar

13. Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 2017;78:1246-62.10.1016/j.msec.2017.05.01728575964 Search in Google Scholar

14. Gamblin AL, Brennan MA, Renaud A, et al. Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials 2014;35(36):9660-7.10.1016/j.biomaterials.2014.08.01825176068 Search in Google Scholar

15. Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clin Cases Miner Bone Metab 2015;12(2):183-7.10.11138/ccmbm/2015.12.2.183462577826604947 Search in Google Scholar

16. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021;26(10):3007.10.3390/molecules26103007815851034070157 Search in Google Scholar

17. Katagiri T, Watabe T. Bone Morphogenetic Proteins. Cold Spring Harb Perspect Biol 2016;8(6):a021899.10.1101/cshperspect.a021899488882127252362 Search in Google Scholar

18. Cicciù, M. Growth Factor Applied to Oral and Regenerative Surgery. Int J Mol Sci 2020;21:7752.10.3390/ijms21207752758980033092073 Search in Google Scholar

19. Eltom A, Zhong G, Muhamad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng 2019(4):1-13.10.1155/2019/3429527 Search in Google Scholar

20. Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021;13(16):2623.10.3390/polym13162623839991534451161 Search in Google Scholar

21. Qiu YL, Chen X, Hou YL, et al. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep 2019;19(5):4043-56.10.3892/mmr.2019.10066647181230896809 Search in Google Scholar

22. Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 2016;1(2):93-108.10.1016/j.bioactmat.2016.11.001548254728653043 Search in Google Scholar

23. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012;40(5):363-408.10.1615/CritRevBiomedEng.v40.i5.10376636923339648 Search in Google Scholar

24. Yuan N, Rezzadeh KS, Lee JC. Biomimetic Scaffolds for Osteogenesis. Receptors Clin Investig 2015;2(3):898. Search in Google Scholar

25. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27):5474-91.10.1016/j.biomaterials.2005.02.00215860204 Search in Google Scholar

26. Huang Y, Ren J, Ren T, et al. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. J Biomed Materials Res 2010;95A(4):993-1003.10.1002/jbm.a.3292220872750 Search in Google Scholar

27. Chau D, Agashi K, Shakesheff K. Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol 2008; 24:1031-44.10.1179/174328408X341726 Search in Google Scholar

28. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014;3:61-102.10.1007/s40204-014-0026-7470937226798575 Search in Google Scholar

29. Torabi K, Farjood E, Hamedani S. Rapid Prototyping technologies and their applications in prosthodontics, a review of literature. J Dent Shiraz Univ Med Sci 2015;16:1-9. Search in Google Scholar

30. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel) 2021; 13(18):3101.10.3390/polym13183101847030134578002 Search in Google Scholar

31. Sah MK, Sadanand J, Pramanik K. Computational approaches in tissue engineering, Int J Comput Appl 2011;27:13-20.10.5120/3290-4484 Search in Google Scholar

32. Yu XH, Tang XY, Gohil SV, Laurencin CT. Adv Healthc Mater 2015;4:1268-85.10.1002/adhm.201400760 Search in Google Scholar

33. Ning C, Zhou L, Tan G. Fourth-generation biomedical materials. 2015;19(1):2–3.10.1016/j.mattod.2015.11.005 Search in Google Scholar

34. Sachot N, Mateos-Timoneda MA, Planell JA, et al. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture. Nanoscale 2015;7(37):15349-61.10.1039/C5NR04275E Search in Google Scholar

35. Matassi F, Nistri L, Chicon Paez D, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 2011;8(1):21-24. Search in Google Scholar

36. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020;5: 584-603.10.1038/s41578-020-0204-2 Search in Google Scholar

37. Best SM, Porter AE, Thian ES, Huang J. Bioceramics: Past, Present and for the Future. J Europ Ceram Soc 2008;28:1319-1327.10.1016/j.jeurceramsoc.2007.12.001 Search in Google Scholar

38. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite - Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights 2016.10.4137/BTRI.S36138 Search in Google Scholar

39. Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016;3(1):56-71.10.1016/j.gendis.2015.09.004488003027239485 Search in Google Scholar

40. Suneelkumar C, Datta K, Srinivasan MR, Kumar ST. Biphasic calcium phosphate in periapical surgery. J Conserv Dent 2008;11:92-96.10.4103/0972-0707.44059281309620142892 Search in Google Scholar

41. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;(9):4457-86.10.1016/j.actbio.2012.08.02322922331 Search in Google Scholar

42. Zhao, WT, Michalik D, Ferguson S, et al. Rapid evaluation of bioactive Ti-based surfaces using an in vitro titration method. Nat Commun 2019;(10):2062.10.1038/s41467-019-09673-1649764531048680 Search in Google Scholar

43. Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A 2016;113(3):716-21.10.1073/pnas.1518238113472553926729859 Search in Google Scholar

44. Tavoni M, Dapporto M, Tampieri A, Sprio S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. J Compos Sci 2021;5:227.10.3390/jcs5090227 Search in Google Scholar

45. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-63.10.1016/j.biomaterials.2004.09.04915621246 Search in Google Scholar

46. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012;2012:641430.10.1155/2012/641430341865022919393 Search in Google Scholar

47. Rico-Llanos GA, Borrego-González S, Moncayo- Donoso M, Becerra J, Visser R. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13(4):599.10.3390/polym13040599792318833671329 Search in Google Scholar

48. Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel) 2013;6(4):1285-1309.10.3390/ma6041285545231628809210 Search in Google Scholar

49. Shi LY, Wang F, Zhu W, et al. Self-healing silk fibroinbased hydrogel for bone regeneration: dynamic metalligand self-assembly approach. Adv Funct Mater 2017;27:1700591.10.1002/adfm.201700591 Search in Google Scholar

50. Nisal A, Sayyad R, Dhavale P, et al. Silk fibroin microparticle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration. Sci Rep 2018;8:7235.10.1038/s41598-018-25643-x594092429740071 Search in Google Scholar

51. Bhattacharjee P, Kundu B, Naskar D, et al. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater 2017;63:1-17.10.1016/j.actbio.2017.09.02728941652 Search in Google Scholar

52. Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020;12(4):905.10.3390/polym12040905724070332295115 Search in Google Scholar

53. Ghalia MA, Dahman Y. Biodegradable Poly(Lactic Acid)-Based Scaffolds: Synthesis and Biomedical Applications. J Polym Res 2017;24:74.10.1007/s10965-017-1227-2 Search in Google Scholar

54. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021;13(7):1105.10.3390/polym13071105803745133808492 Search in Google Scholar

55. Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 2016;27:064001.10.1088/0957-4484/27/6/064001505547326758780 Search in Google Scholar

56. Ren Z, Ma S, Jin L, et al. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 2017;9:025036.10.1088/1758-5090/aa747f28631613 Search in Google Scholar

57. Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS Appl Mater Interfaces 2017; 9:22950-8.10.1021/acsami.7b0501228636315 Search in Google Scholar

58. Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 2014;114:213-21.10.1016/j.carbpol.2014.08.00825263884 Search in Google Scholar

59. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res Part A 2010;94:241-51.10.1002/jbm.a.3265720166220 Search in Google Scholar

60. Deng Y, Yang WZ, Shi D, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater 2019;11:1-13.10.1038/s41427-019-0139-5 Search in Google Scholar

61. Wilson JA, Luong D, Kleinfehn AP, Sallam S, Wesdemiotis C, Becker ML. Magnesium catalyzed polymerization of end functionalized poly(propylene maleate) and poly(propylene fumarate) for 3D printing of bioactive scaffolds. J Am Chem Soc 2018;140:277-84.10.1021/jacs.7b0997829236489 Search in Google Scholar

62. Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med 2019; 5(2):128-54.10.1007/s40883-018-0072-0669715831423461 Search in Google Scholar

63. Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3(10):589-601.10.1098/rsif.2006.0124166465516971328 Search in Google Scholar

64. Linhart W, Peters F, Lehmann W, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001;54:162-71.10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3 Search in Google Scholar

65. Ju J, Peng X, Huang K, et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer 2019;121707.10.1016/j.polymer.2019.121707 Search in Google Scholar

66. Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A, 2010;95A:973-81.10.1002/jbm.a.32926 Search in Google Scholar

67. Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003;4(6):1466-86.10.1021/bm034247a14606869 Search in Google Scholar

68. Gentile P, Chiono V, Hatton PV. An Overview of Poly ( lactic- co -glycolic ) Acid ( PLGA ) -Based Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2014;15:3640-59.10.3390/ijms15033640397535924590126 Search in Google Scholar

69. Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)- based composite bone-substitute materials. Bioact Mater 2020;6(2):346-60.10.1016/j.bioactmat.2020.08.016747552132954053 Search in Google Scholar

70. Wang DX, He Y, Bi L, et al. Enhancing the bioactivity of poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomed 2013;8:1855-65.10.2147/IJN.S43706365681823690683 Search in Google Scholar

71. Zhang PB, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface- grafted with poly(Llactide). Biomaterials 2009; 30:58-70.10.1016/j.biomaterials.2008.08.04118838160 Search in Google Scholar

72. Namini MS, Bayat N, Tajerian R, et al. A comparison study on the behavior of human endometrial stem cellderived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. J Orthop Surg Res 2018;13:63.10.1186/s13018-018-0754-9587017529587806 Search in Google Scholar

73. Park JW, Hwang JU, Back JH. High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos B Eng 2019;178:107449.10.1016/j.compositesb.2019.107449 Search in Google Scholar

74. Fisher PD, Venugopal G, Milbrandt TA, Hilt JZ, Puleo DA. Hydroxyapatite-reinforced in situ forming PLGA systems for intraosseous injection. J Biomed Mater Res Part A 2015;103:2365-73.10.1002/jbm.a.3537525424622 Search in Google Scholar

75. Fu C, Bai H, Zhu J, Niu Z, Bai Y. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS ONE 2017;12:e18835210.1371/journal.pone.0188352570673229186202 Search in Google Scholar

76. Huang Y, Ren J, Ren T, et al. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. J Biomed Mater Res Part A 2010;95A(4):993–1003.10.1002/jbm.a.3292220872750 Search in Google Scholar

77. Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019;1900272.10.1002/mabi.20190027231531955 Search in Google Scholar

78. Ratanajanchai M, Soodvilai S, Pimpha N, Sunintaboon P. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test. Mater Sci Eng C Mater Biol Appl 2014;34:377-83.10.1016/j.msec.2013.09.03724268272 Search in Google Scholar

79. Vicennati P, Giuliano A, Ortaggi G, Masotti A. Polyethylenimine In Medicinal Chemistry. Curr Med Chem 2008;15(27):2826-39.10.2174/09298670878624277818991638 Search in Google Scholar

80. Wen Y, Pan S, Luo X, Zhang W, Shen Y, Feng M. PEGand PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection. J Biomater Sci Polym Ed 2010;21(8-9):1103-26.10.1163/092050609X1245929575031620507711 Search in Google Scholar

81. Simionescu BC, Drobota M, Timpu D, Vasiliu T, Constantinescu CA, Rebleanu D, Calin M, David G. Biopolymers/poly(ε-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;81:167-176.10.1016/j.msec.2017.07.03128887961 Search in Google Scholar

82. Shiels SM, Solomon KD, Pilia M, Appleford MR., Ong JL. BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. J Biomed Mater Res A 2012;100A(11):3117-23.10.1002/jbm.a.3424122815074 Search in Google Scholar

83. Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 2020.10.1039/C9TB02271F32159205 Search in Google Scholar

eISSN:
2956-0454
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other