This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Skarnes RC, Watson DWJBr. Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 1957;21(4):273.SkarnesRCWatsonDWJBrAntimicrobial factors of normal tissues and fluidsBacteriol Rev1957214273Search in Google Scholar
Hirsch JGJTJoem. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Expt Med 1956;103(5):589.Hirsch JGJTJoemPhagocytin: a bactericidal substance from polymorphonuclear leucocytesJ Expt Med19561035589Search in Google Scholar
Zeya H, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes I. resolution of antibacterial and enzymatic activities. J Bacteriol 1966;91(2):750–4.ZeyaHSpitznagelJKCationic proteins of polymorphonuclear leukocyte lysosomes I. resolution of antibacterial and enzymatic activitiesJ Bacteriol19669127504Search in Google Scholar
Zeya H, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes II. Composition, properties, and mechanism of antibacterial action. J Bacteriol 1966;91(2):755–62.ZeyaHSpitznagelJKCationic proteins of polymorphonuclear leukocyte lysosomes II. Composition, properties, and mechanism of antibacterial actionJ Bacteriol196691275562Search in Google Scholar
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1988;23(2–3):360.ZasloffMMagainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursorProc Natl Acad Sci USA1988232–3360Search in Google Scholar
Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial competition. Trends Microbiol 1999;7(3):129–33.RileyMAGordonDMThe ecological role of bacteriocins in bacterial competitionTrends Microbiol19997312933Search in Google Scholar
Brandenburg L-O, Merres J, Albrecht L-J, Varoga D, Pufe T. Antimicrobial peptides: multifunctional drugs for different applications. Polymers 2012;4(1):539–60.BrandenburgL-OMerresJAlbrechtL-JVarogaDPufeTAntimicrobial peptides: multifunctional drugs for different applicationsPolymers20124153960Search in Google Scholar
De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005;27(18):1337–47.De SmetKContrerasRHuman antimicrobial peptides: defensins, cathelicidins and histatinsBiotechnol Lett20052718133747Search in Google Scholar
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003;55(1):27–55.YeamanMRYountNYMechanisms of antimicrobial peptide action and resistancePharmacol Rev20035512755Search in Google Scholar
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002;46(3):605–14.PatrzykatAFriedrichCLZhangLMendozaVHancockRESublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coliAntimicrob Agents Chemother200246360514Search in Google Scholar
Krizsan A, Volke D, Weinert S, Sträter N, Knappe D, Hoffmann R. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70 S ribosome. Angew Chem Int Ed Engl 2014;53(45):12236–9.KrizsanAVolkeDWeinertSSträterNKnappeDHoffmannRInsect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70 S ribosomeAngew Chem Int Ed Engl20145345122369Search in Google Scholar
Ginsburg I. Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics?; it is enigmatic why this concept is consistently disregarded. Med Hypotheses 2004;62(3):367–74.GinsburgIBactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics?; it is enigmatic why this concept is consistently disregardedMed Hypotheses200462336774Search in Google Scholar
Aboudy Y, Mendelson E, Shalit I, Bessalle R, Fridkin M. Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Int J Pept Protein Res 1994;43(6):573–82.AboudyYMendelsonEShalitIBessalleRFridkinMActivity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2Int J Pept Protein Res199443657382Search in Google Scholar
Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 2002;66(2):229–34.BelaidAAouniMKhelifaRTrabelsiAJemmaliMHaniKIn vitro antiviral activity of dermaseptins against herpes simplex virus type 1J Med Virol200266222934Search in Google Scholar
Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 1998;79 (Pt 4):731–40.WachingerMKleinschmidtAWinderDvon PechmannNLudvigsenANeumannMAntimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expressionJ Gen Virol199879Pt 473140Search in Google Scholar
Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLOS ONE 2011;6(10):e25333.BarlowPGSvobodaPMackellarANashAAYorkIAPohlJAntiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37PLOS ONE2011610e25333Search in Google Scholar
Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, et al. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 2006;103(5):1516–21.BuckCBDayPMThompsonCDLubkowskiJLuWLowyDRHuman alpha-defensins block papillomavirus infectionProc Natl Acad Sci U S A20061035151621Search in Google Scholar
Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986;60(3):1068–74.DaherKASelstedMELehrerRIDirect inactivation of viruses by human granulocyte defensinsJ Virol1986603106874Search in Google Scholar
Sinha S, Cheshenko N, Lehrer RI, Herold BC. NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 2003;47(2):494–500.SinhaSCheshenkoNLehrerRIHeroldBCNP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2Antimicrob Agents Chemother2003472494500Search in Google Scholar
Chang TL, Vargas J, Jr., DelPortillo A, Klotman ME. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 2005;115(3):765–73.ChangTLVargasJJr.DelPortilloAKlotmanMEDual role of alpha-defensin-1 in anti-HIV-1 innate immunityJ Clin Invest2005115376573Search in Google Scholar
Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Söderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 2007;5(4):410–5.BergmanPWalter-JallowLBrolidenKAgerberthBSöderlundJThe antimicrobial peptide LL-37 inhibits HIV-1 replicationCurr HIV Res2007544105Search in Google Scholar
Liang QL, Zhou K, He HX. Retrocyclin 2: a new therapy against avian influenza H5N1 virus in vivo and vitro. Biotechnol Lett 2010;32(3):387–92.LiangQLZhouKHeHXRetrocyclin 2: a new therapy against avian influenza H5N1 virus in vivo and vitroBiotechnol Lett201032338792Search in Google Scholar
Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, et al. Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites. PLOS ONE 2016;11(6):e0157242.DurnaśBWnorowskaUPogodaKDeptułaPWątekMPiktelECandidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection SitesPLOS ONE2016116e0157242Search in Google Scholar
De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Medical Mycology 1998;36(5):291–8.De LuccaAJBlandJMJacksTJGrimmCWalshTJFungicidal and binding properties of the natural peptides cecropin B and dermaseptinMedical Mycology19983652918Search in Google Scholar
Mangoni ML, Grovale N, Giorgi A, Mignogna G, Simmaco M, Barra D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 2000;21(11):1673–9.MangoniMLGrovaleNGiorgiAMignognaGSimmacoMBarraDStructure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretionsPeptides2000211116739Search in Google Scholar
Mangoni ML, Marcellini HG, Simmaco M. Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. J Pept Sci 2007;13(9):603–13.MangoniMLMarcelliniHGSimmacoMBiological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skinJ Pept Sci200713960313Search in Google Scholar
Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Scalise G. Antimicrobial activity of polycationic peptides. Peptides 1999;20(11):1265–73.GiacomettiACirioniOBarchiesiFDel PreteMSScaliseGAntimicrobial activity of polycationic peptidesPeptides19992011126573Search in Google Scholar
Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, et al. Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1990;87(15):5950–4.SchmatzDMRomancheckMAPittarelliLASchwartzREFromtlingRANollstadtKHTreatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitorsProceedings of the National Academy of Sciences of the United States of America1990871559504Search in Google Scholar
Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997;35(2):79–86.KurtzMBDouglasCMLipopeptide inhibitors of fungal glucan synthaseJ Med Vet Mycol19973527986Search in Google Scholar
Hector RF, Zimmer BL, Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 1990;34(4):587–93.HectorRFZimmerBLPappagianisDEvaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosisAntimicrob Agents Chemother199034458793Search in Google Scholar
Clemons KV, Stevens DA. Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 1997;41(9):2026–8.ClemonsKVStevensDAEfficacy of nikkomycin Z against experimental pulmonary blastomycosisAntimicrob Agents Chemother199741920268Search in Google Scholar
Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 1997;272(15):9809–17.NagiecMMNagiecEEBaltisbergerJAWellsGBLesterRLDicksonRCSphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 geneJ Biol Chem199727215980917Search in Google Scholar
Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, et al. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo) 1993;46(9):1414–20.TakesakoKKurodaHInoueTHarunaFYoshikawaYKatoIBiological properties of aureobasidin A, a cyclic depsipeptide antifungal antibioticJ Antibiot (Tokyo)1993469141420Search in Google Scholar
Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, et al. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 1994;269(52):33159–63.FehlbaumPBuletPMichautLLagueuxMBroekaertWFHetruCInsect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptidesJ Biol Chem1994269523315963Search in Google Scholar
Thevissen K, Kristensen HH, Thomma BP, Cammue BP, François IE. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 2007;12(21–22):966–71.ThevissenKKristensenHHThommaBPCammueBPFrançoisIETherapeutic potential of antifungal plant and insect defensinsDrug Discov Today20071221–2296671Search in Google Scholar
Santarpia RP, 3rd, Pollock JJ, Renner RP, Gwinnett AJ. In vivo antifungal efficacy of salivary histidine-rich polypeptides: preliminary findings in a denture stomatitis model system. J Prosthet Dent 1991;66(5):693–9.SantarpiaRP3rdPollockJJRennerRPGwinnettAJIn vivo antifungal efficacy of salivary histidine-rich polypeptides: preliminary findings in a denture stomatitis model systemJ Prosthet Dent19916656939Search in Google Scholar
Pollock JJ, Denepitiya L, MacKay BJ, Iacono VJ. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun 1984;44(3):702–7.PollockJJDenepitiyaLMacKayBJIaconoVJFungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicansInfect Immun19844437027Search in Google Scholar
Rayhan R, Xu L, Santarpia RP, 3rd, Tylenda CA, Pollock JJ. Antifungal activities of salivary histidine-rich polypeptides against Candida albicans and other oral yeast isolates. Oral Microbiol Immunol 1992;7(1):51–2.RayhanRXuLSantarpiaRP3rdTylendaCAPollockJJAntifungal activities of salivary histidine-rich polypeptides against Candida albicans and other oral yeast isolatesOral Microbiol Immunol199271512Search in Google Scholar
Helmerhorst EJ, Reijnders IM, van't Hof W, Simoons-Smit I, Veerman EC, Amerongen AV. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 1999;43(3):702–4.HelmerhorstEJReijndersIMvan't HofWSimoons-SmitIVeermanECAmerongenAVAmphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptidesAntimicrob Agents Chemother19994337024Search in Google Scholar
Tsai H, Bobek LA. Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta 1997;1336(3):367–9.TsaiHBobekLAHuman salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformansBiochim Biophys Acta1997133633679Search in Google Scholar
Helmerhorst EJ, van't Hof W, Breeuwer P, Veerman EC, Abee T, Troxler RF, et al. Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation. J Biol Chem 2001;276(8):5643–9.HelmerhorstEJvan't HofWBreeuwerPVeermanECAbeeTTroxlerRFCharacterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formationJ Biol Chem2001276856439Search in Google Scholar
Gelhaus C, Jacobs T, Andrä J, Leippe M. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 2008;52(5):1713–20.GelhausCJacobsTAndräJLeippeMThe antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparumAntimicrob Agents Chemother2008525171320Search in Google Scholar
Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M. NK-Lysin and Its Shortened Analog NK-2 Exhibit Potent Activities against Trypanosoma cruzi. Antimicrob Agents Chemother 2003;47:607–13.JacobsTBruhnHGaworskiIFleischerBLeippeMNK-Lysin and Its Shortened Analog NK-2 Exhibit Potent Activities against Trypanosoma cruziAntimicrob Agents Chemother20034760713Search in Google Scholar
Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 1989;57(9):2628–33.GwadzRWKaslowDLeeJYMaloyWLZasloffMMillerLHEffects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoesInfect Immun1989579262833Search in Google Scholar
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, et al. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2017;95(1):82–90.Aguilar-DiazHCanizalez-RomanANepomuceno-MejiaTGallardo-VeraFHornelas-OrozcoYNazmiKParasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalisBiochem Cell Biol20179518290Search in Google Scholar
Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 2005;49(1):269–75.EricksenBWuZLuWLehrerRIAntibacterial activity and specificity of the six human {alpha}-defensinsAntimicrob Agents Chemother200549126975Search in Google Scholar
Ellison RT, 3rd, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 1991;88(4):1080–91.EllisonRT3rdGiehlTJKilling of gram-negative bacteria by lactoferrin and lysozymeJ Clin Invest1991884108091Search in Google Scholar
Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore) 2018;97(42):e12832.GuoYXunMHanJA bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA)Medicine (Baltimore)20189742e12832Search in Google Scholar
Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev 2017;30(2):557–96.PoirelLJayolANordmannPPolymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or ChromosomesClin Microbiol Rev201730255796Search in Google Scholar
Beringer PM, Bensman TJ, Ho H, Agnello M, Denovel N, Nguyen A, et al. Rhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2016;71(1):181–8.BeringerPMBensmanTJHoHAgnelloMDenovelNNguyenARhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosaJ Antimicrob Chemother20167111818Search in Google Scholar
Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998;42(1):154–60.BrötzHBierbaumGLeopoldKReynoldsPESahlHGThe lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid IIAntimicrob Agents Chemother199842115460Search in Google Scholar
Chitnis SN, Prasad KS. Seminalplasmin, an antimicrobial protein from bovine seminal plasma, inhibits peptidoglycan synthesis in Escherichia coli. FEMS Microbiol Lett 1990;60(3):281–4.ChitnisSNPrasadKSSeminalplasmin, an antimicrobial protein from bovine seminal plasma, inhibits peptidoglycan synthesis in Escherichia coliFEMS Microbiol Lett19906032814Search in Google Scholar
Furci L, Baldan R, Bianchini V, Trovato A, Ossi C, Cichero P, et al. New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect Immun 2015;83(3):986–95.FurciLBaldanRBianchiniVTrovatoAOssiCCicheroPNew role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strainsInfect Immun201583398695Search in Google Scholar
Maisetta G, Batoni G, Esin S, Florio W, Bottai D, Favilli F, et al. In vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strains. Antimicrob Agents Chemother 2006;50(2):806–9.MaisettaGBatoniGEsinSFlorioWBottaiDFavilliFIn vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strainsAntimicrob Agents Chemother20065028069Search in Google Scholar
Xiong YQ, Bayer AS, Yeaman MR. Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins. J Infect Dis 2002;185(3):348–56.XiongYQBayerASYeamanMRInhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteinsJ Infect Dis2002185334856Search in Google Scholar
Wilmes M, Stockem M, Bierbaum G, Schlag M, Götz F, Tran DQ, et al. Killing of staphylococci by θ-defensins involves membrane impairment and activation of autolytic enzymes. Antibiotics (Basel) 2014;3(4):617–31.WilmesMStockemMBierbaumGSchlagMGötzFTranDQKilling of staphylococci by θ-defensins involves membrane impairment and activation of autolytic enzymesAntibiotics (Basel)20143461731Search in Google Scholar
Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One 2012;7(9):e45208.FurciLTolazziMSironiFVassenaLLussoPInhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosaePLoS One201279e45208Search in Google Scholar
Quiñones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. Aids 2003;17(16):F39–48.Quiñones-MateuMELedermanMMFengZChakrabortyBWeberJRangelHRHuman epithelial beta-defensins 2 and 3 inhibit HIV-1 replicationAids20031716F3948Search in Google Scholar
Seidel A, Ye Y, de Armas LR, Soto M, Yarosh W, Marcsisin RA, et al. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One 2010;5(3):e9737.SeidelAYeYde ArmasLRSotoMYaroshWMarcsisinRACyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanismsPLoS One201053e9737Search in Google Scholar
Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ, et al. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 2006;177(12):8658–66.HazratiEGalenBLuWWangWOuyangYKellerMJHuman alpha- and beta-defensins block multiple steps in herpes simplex virus infectionJ Immunol200617712865866Search in Google Scholar
Endo M, Takesako K, Kato I, Yamaguchi H. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 1997;41(3):672–6.EndoMTakesakoKKatoIYamaguchiHFungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiaeAntimicrob Agents Chemother19974136726Search in Google Scholar
Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 2007;13(4):243–7.AertsAMFrançoisIEMeertEMLiQTCammueBPThevissenKThe antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicansJ Mol Microbiol Biotechnol20071342437Search in Google Scholar
Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue BP, et al. The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans. Front Microbiol. 2011;2:47.AertsAMBammensLGovaertGCarmona-GutierrezDMadeoFCammueBPThe Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicansFront Microbiol.2011247Search in Google Scholar
Aerts AM, François IE, Bammens L, Cammue BP, Smets B, Winderickx J, et al. Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 2006;580(7):1903–7.AertsAMFrançoisIEBammensLCammueBPSmetsBWinderickxJLevel of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeastFEBS Lett2006580719037Search in Google Scholar
Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 1996;271(25):15018–25.ThevissenKGhaziADe SamblanxGWBrownleeCOsbornRWBroekaertWFFungal membrane responses induced by plant defensins and thioninsJ Biol Chem1996271251501825Search in Google Scholar
Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 2007;46(4):987–96.LoboDSPereiraIBFragel-MadeiraLMedeirosLNCabralLMFariaJAntifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycleBiochemistry200746498796Search in Google Scholar
Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000;8(9):402–10.HancockREDiamondGThe role of cationic antimicrobial peptides in innate host defencesTrends Microbiol20008940210Search in Google Scholar
Beisswenger C, Bals R. Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 2005;6(3):255–64.BeisswengerCBalsRFunctions of antimicrobial peptides in host defense and immunityCurr Protein Pept Sci20056325564Search in Google Scholar
Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.ZanettiMCathelicidins, multifunctional peptides of the innate immunityJ Leukoc Biol.20047513948Search in Google Scholar
Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 2003;170(11):5583–9.SørensenOECowlandJBTheilgaard-MönchKLiuLGanzTBorregaardNWound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factorsJ Immunol20031701155839Search in Google Scholar
Yang B, Suwanpradid J, Sanchez-Lagunes R, Choi HW, Hoang P, Wang D, et al. IL-27 Facilitates Skin Wound Healing through Induction of Epidermal Proliferation and Host Defense. J Invest Dermatol. 2017;137(5):1166–75.YangBSuwanpradidJSanchez-LagunesRChoiHWHoangPWangDIL-27 Facilitates Skin Wound Healing through Induction of Epidermal Proliferation and Host DefenseJ Invest Dermatol.20171375116675Search in Google Scholar
Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of Macrophages, T Lymphocytes, and Mast Cells Is Evolutionarily Conserved within the Human α-Defensin Family. J Immunol 2007;179(6):3958–65.GrigatJSoruriAForssmannURiggertJZwirnerJChemoattraction of Macrophages, T Lymphocytes, and Mast Cells Is Evolutionarily Conserved within the Human α-Defensin FamilyJ Immunol20071796395865Search in Google Scholar
Toyoguchi T, Ebihara M, Ojima F, Hosoya J, Shoji T, Nakagawa Y. Histamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cells. J Pharm Pharmacol 2000;52(3):327–31.ToyoguchiTEbiharaMOjimaFHosoyaJShojiTNakagawaYHistamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cellsJ Pharm Pharmacol200052332731Search in Google Scholar
Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 1999;163(2):947–53.BefusADMowatCGilchristMHuJSolomonSBatemanANeutrophil defensins induce histamine secretion from mast cells: mechanisms of actionJ Immunol1999163294753Search in Google Scholar
Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2005;7(9):1251–62.ZughaierSMShaferWMStephensDSAntimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophagesCell Microbiol200579125162Search in Google Scholar
Ammar B, Périanin A, Mor A, Sarfati G, Tissot M, Nicolas P, et al. Dermaseptin, a peptide antibiotic, stimulates microbicidal activities of polymorphonuclear leukocytes. Biochem Biophys Res Commun 1998;247(3):870–5.AmmarBPérianinAMorASarfatiGTissotMNicolasPDermaseptin, a peptide antibiotic, stimulates microbicidal activities of polymorphonuclear leukocytesBiochem Biophys Res Commun199824738705Search in Google Scholar
Xie H, Wei J, Qin Q. Antiviral function of Tachyplesin I against iridovirus and nodavirus. Fish Shellfish Immunol 2016;58:96–102.XieHWeiJQinQAntiviral function of Tachyplesin I against iridovirus and nodavirusFish Shellfish Immunol20165896102Search in Google Scholar
Lillard J, Boyaka P, Chertov O, Oppenheim J, McGhee J. Mechanisms for induction of aquired host immunity by neutrophil peptide defensins. Proceedings of the National Academy of Sciences of the United States of America 1999;96:651–6.LillardJBoyakaPChertovOOppenheimJMcGheeJMechanisms for induction of aquired host immunity by neutrophil peptide defensinsProceedings of the National Academy of Sciences of the United States of America1999966516Search in Google Scholar
Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000;97(16):8856–61.HancockREScottMGThe role of antimicrobial peptides in animal defensesProc Natl Acad Sci U S A20009716885661Search in Google Scholar
Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol 2010;618:137–54.GiulianiAPirriGRinaldiACAntimicrobial peptides: the LPS connectionMethods Mol Biol201061813754Search in Google Scholar
Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002;169(7):3883–91.ScottMGDavidsonDJGoldMRBowdishDHancockREThe human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responsesJ Immunol20021697388391Search in Google Scholar
Popovic S, Djurdjevic P, Zaric M, Mijailovic Z, Avramovic D, Baskic DJPb. Effects of host defense peptides B2RP, Brevinin-2GU, D-Lys-Temporin, Lys-XT-7 and D-Lys-Ascaphin-8 on peripheral blood mononuclear cells: Preliminary study. Periodicum Biologorum 2017;119(2).PopovicSDjurdjevicPZaricMMijailovicZAvramovicDBaskicDJPbEffects of host defense peptides B2RP, Brevinin-2GU, D-Lys-Temporin, Lys-XT-7 and D-Lys-Ascaphin-8 on peripheral blood mononuclear cells: Preliminary studyPeriodicum Biologorum20171192Search in Google Scholar
Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006;176(4):2455–64.MookherjeeNBrownKLBowdishDMDoriaSFalsafiRHokampKModulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37J Immunol20061764245564Search in Google Scholar
Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004;172(2):1146–56.DavidsonDJCurrieAJReidGSBowdishDMMacDonaldKLMaRCThe cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarizationJ Immunol20041722114656Search in Google Scholar
Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 2006;18(12):1729–36.KandlerKShaykhievRKleemannPKlesczFLohoffMVogelmeierCThe anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligandsInt Immunol20061812172936Search in Google Scholar
Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, et al. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 2003;18(2):95–9.BrogdenKAHeidariMSaccoREPalmquistDGuthmillerJMJohnsonGKDefensin-induced adaptive immunity in mice and its potential in preventing periodontal diseaseOral Microbiol Immunol2003182959Search in Google Scholar
Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, et al. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol 2000;12(5):691–700.TaniKMurphyWJChertovOSalcedoRKohCYUtsunomiyaIDefensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigensInt Immunol2000125691700Search in Google Scholar
Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 2006;15(8):933–46.MaderJSHoskinDWCationic antimicrobial peptides as novel cytotoxic agents for cancer treatmentExpert Opin Investig Drugs200615893346Search in Google Scholar
Risso A, Zanetti M, Gennaro R. Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 1998;189(2):107–15.RissoAZanettiMGennaroRCytotoxicity and apoptosis mediated by two peptides of innate immunityCell Immunol1998189210715Search in Google Scholar
Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS. Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem 2004;136(2):255–9.YeJSZhengXJLeungKWChenHMSheuFSInduction of transient ion channel-like pores in a cancer cell by antibiotic peptideJ Biochem200413622559Search in Google Scholar
Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1997;1336(2):171–9.ChenHMWangWSmithDChanSCEffects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cellsBiochim Biophys Acta1997133621719Search in Google Scholar
Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, et al. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett 2004;212(2):185–94.OkumuraKItohAIsogaiEHiroseKHosokawaYAbikoYC-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cellsCancer Lett2004212218594Search in Google Scholar
Doyle J, Brinkworth CS, Wegener KL, Carver JA, Llewellyn LE, Olver IN, et al. nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. Eur J Biochem 2003;270(6):1141–53.DoyleJBrinkworthCSWegenerKLCarverJALlewellynLEOlverINnNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modification. The solution structure of a modified citropin 1.1Eur J Biochem20032706114153Search in Google Scholar
Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 2003;24(7):945–53.KimSKimSSBangYJKimSJLeeBJIn vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell linesPeptides200324794553Search in Google Scholar
Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 2006;50(1):141–7.LehmannJRetzMSidhuSSSuttmannHSellMPaulsenFAntitumor activity of the antimicrobial peptide magainin II against bladder cancer cell linesEur Urol20065011417Search in Google Scholar
Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, et al. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 2010;31(8):1504–10.ChenYQMinCSangMHanYYMaXXueXQA cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cellsPeptides2010318150410Search in Google Scholar
Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, et al. In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta 2011;1808(11):2638–45.RiedlSRinnerBAsslaberMSchaiderHWalzerSNovakAIn search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacyBiochim Biophys Acta2011180811263845Search in Google Scholar
Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 1993;294 (Pt 1)(Pt 1):1–14.ZachowskiAPhospholipids in animal eukaryotic membranes: transverse asymmetry and movementBiochem J1993294(Pt 1)Pt 1114Search in Google Scholar
Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 2002;22(6):1926–35.RissoABraidotESordanoMCVianelloAMacrìFSkerlavajBBMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition poreMol Cell Biol2002226192635Search in Google Scholar
Berge G, Eliassen LT, Camilio KA, Bartnes K, Sveinbjørnsson B, Rekdal O. Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide. Cancer Immunol Immunother 2010;59(8):1285–94.BergeGEliassenLTCamilioKABartnesKSveinbjørnssonBRekdalOTherapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptideCancer Immunol Immunother2010598128594Search in Google Scholar
Oršolić N, Josipović P, Bašić IJEJoNT. Direct antitumor activity of honey bee venom in vivo and in vitro. Egyptian Journal of Natural Toxins 2009;6(1):1–15.OršolićNJosipovićPBašićIJEJoNTDirect antitumor activity of honey bee venom in vivo and in vitroEgyptian Journal of Natural Toxins200961115Search in Google Scholar
Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012;10(8):1852–72.WuSPHuangTCLinCCHuiCFLinCHChenJYPardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivoMar Drugs2012108185272Search in Google Scholar
Azevedo RA, Ferreira AK, Auada AVV, Pasqualoto KFM, Marques-Porto R, Maria DA, et al. Antitumor effect of cationic INKKI peptide from bovine β-casein on melanoma B16F10. J Canc Ther 2012.AzevedoRAFerreiraAKAuadaAVVPasqualotoKFMMarques-PortoRMariaDAAntitumor effect of cationic INKKI peptide from bovine β-casein on melanoma B16F10J Canc Ther2012Search in Google Scholar
Chen YL, Li JH, Yu CY, Lin CJ, Chiu PH, Chen PW, et al. Novel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell lines. Peptides 2012;36(2):257–65.ChenYLLiJHYuCYLinCJChiuPHChenPWNovel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell linesPeptides201236225765Search in Google Scholar
Rodrigues EG, Dobroff AS, Cavarsan CF, Paschoalin T, Nimrichter L, Mortara RA, et al. Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 2008;10(1):61–8.RodriguesEGDobroffASCavarsanCFPaschoalinTNimrichterLMortaraRAEffective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesinNeoplasia2008101618Search in Google Scholar
Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res 2011;13(5):R102.HilchieALDoucetteCDPintoDMPatrzykatADouglasSHoskinDWPleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenograftsBreast Cancer Res2011135R102Search in Google Scholar
Liu S, Yang H, Wan L, Cai HW, Li SF, Li YP, et al. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol Sin 2011;32(1):79–88.LiuSYangHWanLCaiHWLiSFLiYPEnhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted deliveryActa Pharmacol Sin20113217988Search in Google Scholar
Winder D, Günzburg WH, Erfle V, Salmons B. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun 1998;242(3):608–12.WinderDGünzburgWHErfleVSalmonsBExpression of antimicrobial peptides has an antitumour effect in human cellsBiochem Biophys Res Commun1998242360812Search in Google Scholar
Russell PJ, Hewish D, Carter T, Sterling-Levis K, Ow K, Hattarki M, et al. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunol Immunother 2004;53(5):411–21.RussellPJHewishDCarterTSterling-LevisKOwKHattarkiMCytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studiesCancer Immunol Immunother200453541121Search in Google Scholar
Hui L, Leung K, Chen HM. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res 2002;22(5):2811–6.HuiLLeungKChenHMThe combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cellsAnticancer Res200222528116Search in Google Scholar
Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptidemediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 2000;15(2):151–60.JohnstoneSAGelmonKMayerLDHancockREBallyMBIn vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptidemediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell linesAnticancer Drug Des200015215160Search in Google Scholar
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017;90(6):1079–93.PiotrowskaUSobczakMOledzkaECurrent state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectorsChem Biol Drug Des2017906107993Search in Google Scholar
Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2011;11(1):37–51.FjellCDHissJAHancockRESchneiderGDesigning antimicrobial peptides: form follows functionNat Rev Drug Discov20111113751Search in Google Scholar
Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, et al. A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 2009;4(4):e5039.MeillerTFHubeBSchildLShirtliffMEScheperMAWinklerRA novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptidePLoS One200944e5039Search in Google Scholar
Roy H, Dare K, Ibba M. Adaptation of the bacterial membrane to changing environments using aminoacylated phospholipids. Mol Microbiol 2009;71(3):547–50.RoyHDareKIbbaMAdaptation of the bacterial membrane to changing environments using aminoacylated phospholipidsMol Microbiol200971354750Search in Google Scholar
Giménez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem 2006;14(20):6971–8.GiménezDAndreuCdel OlmoMVareaTDiazDAsensioGThe introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activityBioorg Med Chem2006142069718Search in Google Scholar
Papo N, Shai Y. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 2003;42(31):9346–54.PapoNShaiYNew lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cellsBiochemistry20034231934654Search in Google Scholar
Svenson J, Stensen W, Brandsdal BO, Haug BE, Monrad J, Svendsen JS. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 2008;47(12):3777–88.SvensonJStensenWBrandsdalBOHaugBEMonradJSvendsenJSAntimicrobial peptides with stability toward tryptic degradationBiochemistry20084712377788Search in Google Scholar
Knappe D, Henklein P, Hoffmann R, Hilpert K. Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 2010;54(9):4003–5.KnappeDHenkleinPHoffmannRHilpertKEasy strategy to protect antimicrobial peptides from fast degradation in serumAntimicrob Agents Chemother201054940035Search in Google Scholar
Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, et al. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 2017;95(1):91–8.AriasMHilchieALHaneyEFBolscherJGHyndmanMEHancockREAnticancer activities of bovine and human lactoferricin-derived peptidesBiochem Cell Biol2017951918Search in Google Scholar
Ghosh C, Manjunath GB, Akkapeddi P, Yarlagadda V, Hoque J, Uppu DS, et al. Small molecular antibacterial peptoid mimics: the simpler the better! J Med Chem 2014;57(4):1428–36.GhoshCManjunathGBAkkapeddiPYarlagaddaVHoqueJUppuDSSmall molecular antibacterial peptoid mimics: the simpler the better!J Med Chem2014574142836Search in Google Scholar
Wang Y, Yang YJ, Chen YN, Zhao HY, Zhang S. Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections. Comput Methods Programs Biomed 2016;134:215–23.WangYYangYJChenYNZhaoHYZhangSComputer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infectionsComput Methods Programs Biomed201613421523Search in Google Scholar
de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock RE. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014;10(5):e1004152.de la Fuente-NúñezCReffuveilleFHaneyEFStrausSKHancockREBroad-spectrum anti-biofilm peptide that targets a cellular stress responsePLoS Pathog2014105e1004152Search in Google Scholar
Lohan S, Cameotra SS, Bisht GS. Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem Biol Drug Des 2013;82(5):557–66.LohanSCameotraSSBishtGSSystematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agentsChem Biol Drug Des201382555766Search in Google Scholar
de Breij A, Riool M, Kwakman PH, de Boer L, Cordfunke RA, Drijfhout JW, et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 2016;222:1–8.de BreijARioolMKwakmanPHde BoerLCordfunkeRADrijfhoutJWPrevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145J Control Release201622218Search in Google Scholar
McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med 2003;348(12):1123–33.McGeeDCGouldMKPreventing complications of central venous catheterizationN Engl J Med200334812112333Search in Google Scholar
Rijsbergen M, Rijneveld R, Todd M, Feiss GL, Kouwenhoven STP, Quint KD, et al. Results of phase 2 trials exploring the safety and efficacy of omiganan in patients with human papillomavirus-induced genital lesions. Br J Clin Pharmacol 2020;86(11):2133–43.RijsbergenMRijneveldRToddMFeissGLKouwenhovenSTPQuintKDResults of phase 2 trials exploring the safety and efficacy of omiganan in patients with human papillomavirus-induced genital lesionsBr J Clin Pharmacol20208611213343Search in Google Scholar
Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 2008;47(12):1537–45.LipskyBAHolroydKJZasloffMTopical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan creamClin Infect Dis20084712153745Search in Google Scholar
Cheng KT, Wu CL, Yip BS, Chih YH, Peng KL, Hsu SY, et al. The Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and Resistance. Int J Mol Sci 2020;21(7).ChengKTWuCLYipBSChihYHPengKLHsuSYThe Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and ResistanceInt J Mol Sci2020217Search in Google Scholar
van der Does AM, Bogaards SJ, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH. Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 2010;54(2):811–6.van der DoesAMBogaardsSJRavensbergenBBeekhuizenHvan DisselJTNibberingPHAntimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogensAntimicrob Agents Chemother20105428116Search in Google Scholar
Sveinbjørnsson B, Camilio KA, Haug BE, Rekdal Ø. LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med Chem 2017;9(12):1339–44.SveinbjørnssonBCamilioKAHaugBERekdalØLTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironmentFuture Med Chem2017912133944Search in Google Scholar
Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jøssang DE, Awada A, et al. Safety, Antitumor Activity, and T-cell Responses in a Dose-Ranging Phase I Trial of the Oncolytic Peptide LTX-315 in Patients with Solid Tumors. Clin Cancer Res 2021.SpicerJMarabelleABaurainJFJebsenNLJøssangDEAwadaASafety, Antitumor Activity, and T-cell Responses in a Dose-Ranging Phase I Trial of the Oncolytic Peptide LTX-315 in Patients with Solid TumorsClin Cancer Res2021Search in Google Scholar