INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ; SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953-66.10.1056/NEJMoa030781Search in Google Scholar

2. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Version 2. Cell Mol Immunol. 2020;17(5):533-535.10.1038/s41423-020-0402-2Search in Google Scholar

3. Zhang J, Litvinova M, Wang W, Wang Y, Deng X, Chen X, Li M, Zheng W, Yi L, Chen X, Wu Q, Liang Y, Wang X, Yang J, Sun K, Longini IM Jr, Halloran ME, Wu P, Cowling BJ, Merler S, Viboud C, Vespignani A, Ajelli M, Yu H. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis. 2020:S1473-3099(20)30230-9.10.1016/S1473-3099(20)30230-9Search in Google Scholar

4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-1207.10.1056/NEJMoa2001316712148431995857Search in Google Scholar

5. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014;59(1-3):118-28.10.1007/s12026-014-8534-z412553024845462Search in Google Scholar

6. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens. 2020;9(3):231.10.3390/pathogens9030231715754132245083Search in Google Scholar

7. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20.10.1128/JVI.00127-20708189531996437Search in Google Scholar

8. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8.10.1016/j.cell.2020.02.052710262732142651Search in Google Scholar

9. Xiao L, Sakagami H, Miwa N. ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? Viruses. 2020;12(5):E491.10.3390/v12050491729050832354022Search in Google Scholar

10. Bolevich SB, Voinov VA. Molecular mechanisms in human pathology. Medical Information Agency. 2012;208.Search in Google Scholar

11. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281-292.e6.10.1016/j.cell.2020.02.058710259932155444Search in Google Scholar

12. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-569.10.1038/s41564-020-0688-y709543032094589Search in Google Scholar

13. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH 2nd, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J; HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016-1035.e19.10.2139/ssrn.3555145Search in Google Scholar

14. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215:108427.10.1016/j.clim.2020.108427716993332325252Search in Google Scholar

15. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801-11.10.1128/JVI.77.16.8801-8811.2003Search in Google Scholar

16. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.10.1038/nature02145709501614647384Search in Google Scholar

17. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192.10.1007/s11684-020-0754-0708873832170560Search in Google Scholar

18. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pöhlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34.10.1128/JVI.02232-10312622221325420Search in Google Scholar

19. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293-307.10.1128/JVI.02202-13391167224227843Search in Google Scholar

20. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011 Jan;85(2):873-82.10.1128/JVI.02062-10302002321068237Search in Google Scholar

21. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bio-Rxiv. 2020; doi:10.1101/2020.01.22.914952.10.1101/2020.01.22.914952Search in Google Scholar

22. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9.10.1038/nm1267Search in Google Scholar

23. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004 Jun;203(2):631-7.10.1002/path.1570Search in Google Scholar

24. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/jama.2020.2648.10.1001/jama.2020.2648Search in Google Scholar

25. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, Funk CJ, Manzer R, Miura TA, Pearson LD, Holmes KV, Mason RJ. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127-135.10.1016/j.virol.2007.09.045Search in Google Scholar

26. Weinheimer VK, Becher A, Tonnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Ruckert JC, Szymanski K, Temmesfeld-Wollbrueck B, Gruber AD, Bannert N, Suttorp N, Hippenstiel S, Wolff T, Hocke AC. Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis. 2012;206(11):1685-1694.10.1093/infdis/jis455Search in Google Scholar

27. Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, Huang H, Li C. Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features. Invest Radiol. 2020;55(5):257-261.10.1097/RLI.0000000000000670Search in Google Scholar

28. Zhang S, Li H, Huang S, You W, Sun H. High-resolution computed tomography features of 17 cases of coronavirus disease 2019 in Sichuan province, China. Eur Respir J. 2020 Apr 30;55(4):2000334.10.1183/13993003.00334-2020Search in Google Scholar

29. Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, Ito Y, Holmes KV, Mason RJ. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol. 2013 Jun;48(6):742-8.10.1165/rcmb.2012-0339OCSearch in Google Scholar

30. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-1147.10.2353/ajpath.2007.061088Search in Google Scholar

31. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422.10.1016/S2213-2600(20)30076-XSearch in Google Scholar

32. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185-195.10.1002/path.4454Search in Google Scholar

33. Newton AH, Cardani A, Braciale TJ. The host immune re-sponse in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471-482.10.1007/s00281-016-0558-0Search in Google Scholar

34. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374.10.1007/s11427-020-1643-8Search in Google Scholar

35. Genschmer KR, Russell DW, Lal C, et al. Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Cell. 2019;176(1-2):113–126.e15.10.1016/j.cell.2018.12.002Search in Google Scholar

36. Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CT. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocytederived macrophages and dendritic cells. J Virol. 2009;83(7):3039-48.10.1128/JVI.01792-08Search in Google Scholar

37. Fujimoto I, Pan J, Takizawa T, Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol. 2000 Apr;74(7):3399-403.10.1128/JVI.74.7.3399-3403.2000Search in Google Scholar

38. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.10.1016/S0140-6736(20)30183-5Search in Google Scholar

39. Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol. 2014;306(3):L217‐L230.10.1152/ajplung.00311.2013392020124318116Search in Google Scholar

40. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017 Jul;39(5):529-539.10.1007/s00281-017-0629-x707989328466096Search in Google Scholar

41. Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008;133(1):13-9.10.1016/j.virusres.2007.02.014711431017374415Search in Google Scholar

42. He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020;10.1002/jmv.25766. doi:10.1002/jmv.2576610.1002/jmv.25766Search in Google Scholar

43. Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491‐494.10.1002/jmv.25709Search in Google Scholar

44. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422.10.1016/S2213-2600(20)30076-XSearch in Google Scholar

45. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predic-tors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; doi:10.1007/s00134-020-05991-x;10.1007/s00134-020-05991-xSearch in Google Scholar

46. Pyle CJ, Uwadiae FI, Swieboda DP, Harker JA. Early IL-6 signalling promotes IL-27 dependent maturation of regulatory T cells in the lungs and resolution of viral immunopathology. PLoS Pathog. 2017;13(9):e1006640.10.1371/journal.ppat.1006640563320228953978Search in Google Scholar

47. Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol. 2018;10(2):a028415.10.1101/cshperspect.a028415579375628620096Search in Google Scholar

48. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;e201585.10.1001/jama.2020.1585704288132031570Search in Google Scholar

49. Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19?. Eur Heart J. 2020;41(19):1801‐1803.10.1093/eurheartj/ehaa235718440732196087Search in Google Scholar

50. Wevers BA, van der Hoek L. Renin-angiotensin system in human coronavirus pathogenesis. Future Virol. 2010;5(2):145–161.10.2217/fvl.10.4707996632201502Search in Google Scholar

51. Bell TJ, Brand OJ, Morgan DJ, et al. Defective lung func-tion following influenza virus is due to prolonged, reversible hy-aluronan synthesis. Matrix Biol. 2019;80:14–28.10.1016/j.matbio.2018.06.006654830929933044Search in Google Scholar

52. Heldin P, Lin CY, Kolliopoulos C, Chen YH, Skandalis SS. Regulation of hyaluronan biosynthesis and clinical impact of ex-cessive hyaluronan production. Matrix Biol. 2019;78-79:100–117.10.1016/j.matbio.2018.01.01729374576Search in Google Scholar

53. van den Brand JM, Haagmans BL, van Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014;151(1):83-112.10.1016/j.jcpa.2014.01.004709446924581932Search in Google Scholar

54. Smith JT, Willey NJ, Hancock JT. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett. 2012;8(4):594‐597.10.1098/rsbl.2012.0150339147322496076Search in Google Scholar

55. Lin CW, Lin KH, Hsieh TH, Shiu SY, Li JY. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006;46(3):375‐380.10.1111/j.1574-695X.2006.00045.x711034416553810Search in Google Scholar

56. Padhan K, Minakshi R, Towheed MAB, Jameel S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol. 2008;89(Pt 8):1960‐1969.10.1099/vir.0.83665-018632968Search in Google Scholar

57. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses. 2018;10(8):392.10.3390/v10080392611577630049972Search in Google Scholar

58. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235‐249.10.1016/j.cell.2008.02.043711233618423196Search in Google Scholar

59. Shao H, Lan D, Duan Z, et al. Upregulation of mitochondrial gene expression in PBMC from convalescent SARS patients. J Clin Immunol. 2006;26(6):546‐554.10.1007/s10875-006-9046-y708669417024565Search in Google Scholar

60. Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the Uncharted. N Engl J Med. 2020;382(13):1268‐1269.10.1056/NEJMe2002387712122132109011Search in Google Scholar

61. Gil del Valle L, Gravier Hernández R, Delgado Roche L, et al. Oxidative Stress in the Aging Process: Fundamental Aspects and New Insights. ACS Symposium Series (2015), pp. 177-219;10.1021/bk-2015-1200.ch006Search in Google Scholar

62. Davies KJ. The Oxygen Paradox, oxidative stress, and ageing. Arch Biochem Biophys. 2016;595:28‐32.10.1016/j.abb.2015.11.015483877627095211Search in Google Scholar

63. Smits SL, de Lang A, van den Brand JM, et al. Exacerbated innate host response to SARS-CoV in aged nonhuman primates. PLoS Pathog. 2010;6(2):e1000756.10.1371/journal.ppat.1000756Search in Google Scholar

64. Froldi G, Dorigo P. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Med Hypotheses. 2020;144:110015..10.1016/j.mehy.2020.110015Search in Google Scholar

65. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens. 2020;33(5):373‐374.10.1093/ajh/hpaa057Search in Google Scholar

66. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW. The Northwell COVID-19 Research Consortium. Pesenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-2059.10.1001/jama.2020.6775Search in Google Scholar

67. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.10.1136/bmj.m1091Search in Google Scholar

68. Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA. 2020;323(21):2195‐2198.10.1001/jama.2020.7202Search in Google Scholar

69. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.10.1183/13993003.00547-2020Search in Google Scholar

70. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054‐1062.10.1016/S0140-6736(20)30566-3Search in Google Scholar

71. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950‐2973.10.1016/j.jacc.2020.04.031716488132311448Search in Google Scholar

72. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145‐147.10.1016/j.thromres.2020.04.013714671432291094Search in Google Scholar

73. Durvasula R, Wellington T, McNamara E, Watnick S. COVID-19 and Kidney Failure in the Acute Care Setting: Our Experience From Seattle [published online ahead of print, 2020 Apr 8]. Am J Kidney Dis. 2020;S0272-6386(20)30618-1.10.1053/j.ajkd.2020.04.001Search in Google Scholar

74. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308‐310.10.1038/s41581-020-0284-7Search in Google Scholar

75. Rotzinger DC, Beigelman-Aubry C, von Garnier C, Qanadli SD. Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography. Thromb Res. 2020;190:58‐59.10.1016/j.thromres.2020.04.011Search in Google Scholar

76. Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in COVID-19 Patients: Awareness of an Increased Prevalence. Circulation. 2020;10.1161/CIRCULATIONAHA.120.047430Search in Google Scholar

77. Aggarwal G, Lippi G, Michael Henry B. Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): A pooled analysis of published literature. Int J Stroke. 2020;15(4):385‐389.10.1177/1747493020921664Search in Google Scholar

78. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;e201127.10.1001/jamaneurol.2020.1127Search in Google Scholar

79. Santulli, G.; Morelli, M.; Gambardella, J. Is Endothelial Dysfunction the Concealed Cornerstone of COVID-19? BMJ 2020; 368 doi: 10.1136/bmj.m1091.10.1136/bmj.m1091Search in Google Scholar

80. Cooke, J.P. The endothelium: A new target for therapy. Vasc. Med. 2000, 5, 49–53; Aird, W.C. Endothelium as an organ system. Crit Care Med. 2004, 32, S271–S279;Search in Google Scholar

81. Inagami T, Naruse M, Hoover R. Endothelium as an endocrine organ. Annu Rev Physiol. 1995;57:171‐189.10.1146/annurev.ph.57.030195.001131Search in Google Scholar

82. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607‐1608..10.1016/S0140-6736(20)31094-1Search in Google Scholar

83. Wang M, Hao H, Leeper NJ, Zhu L; Early Career Committee. Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol. 2018;38(6):e90‐e95.10.1161/ATVBAHA.118.310367621817429793992Search in Google Scholar

84. Godo S, Shimokawa H. Endothelial Functions. Arterioscler Thromb Vasc Biol. 2017;37(9):e108‐e114.10.1161/ATVBAHA.117.30981328835487Search in Google Scholar

85. Kazmi RS, Boyce S, Lwaleed BA. Homeostasis of Hemostasis: The Role of Endothelium. Semin Thromb Hemost. 2015;41(6):549‐555.10.1055/s-0035-155658626270112Search in Google Scholar

86. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009;196(2):193‐222.10.1111/j.1748-1716.2009.01964.x19220204Search in Google Scholar

87. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620‐636.10.1161/CIRCRESAHA.115.306301476205226892962Search in Google Scholar

88. Loscalzo J. Oxidative stress in endothelial cell dysfunction and thrombosis. Pathophysiol Haemost Thromb. 2002;32(5-6):359‐360.10.1159/00007360013679676Search in Google Scholar

89. Santulli G. Endothelial cells: The heart attack of the Clones. Sci Transl Med. 2018;10(427):eaar7529.10.1126/scitranslmed.aar7529603471029983858Search in Google Scholar

90. McCormack JJ, Lopes da Silva M, Ferraro F, Patella F, Cutler DF. Weibel-Palade bodies at a glance. J Cell Sci. 2017;130(21):3611‐3617.10.1242/jcs.20803329093059Search in Google Scholar

91. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62.10.1016/j.thromres.2020.04.014715694832305740Search in Google Scholar

92. Sorriento D, Santulli G, Del Giudice C, Anastasio A, Trimarco B, Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Hypertension. 2012;60(1):129‐136.10.1161/HYPERTENSIONAHA.111.18960522665130Search in Google Scholar

93. Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1377‐H1384.10.1152/ajpheart.00331.200818660448Search in Google Scholar

94. Sluimer JC, Gasc JM, Hamming I, et al. Angiotensinconverting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215(3):273‐279.10.1002/path.235718498093Search in Google Scholar

95. Yang J, Feng X, Zhou Q, et al. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A. 2016;113(38):E5628‐E5635.10.1073/pnas.1525078113503590527601681Search in Google Scholar

96. Aimes RT, Zijlstra A, Hooper JD, et al. Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb Haemost. 2003;89(3):561‐572.10.1055/s-0037-1613388Search in Google Scholar

97. Huang DT, Lu CY, Chi YH, et al. Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Sci Rep. 2017;7(1):11300.10.1038/s41598-017-10749-5559589228900138Search in Google Scholar

98. Vanarsdall AL, Pritchard SR, Wisner TW, Liu J, Jardetzky TS, Johnson DC. CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells. mBio. 2018;9(3):e00781-18.10.1128/mBio.00781-18594107829739904Search in Google Scholar

99. Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell. 2005;16(8):3488‐3500.10.1091/mbc.e04-11-1029118229115901832Search in Google Scholar

100. Platt MO, Shockey WA. Endothelial cells and cathepsins: Biochemical and biomechanical regulation. Biochimie. 2016;122:314‐323.10.1016/j.biochi.2015.10.010474780526458976Search in Google Scholar

101. Cai J, Zhong H, Wu J, et al. Cathepsin L promotes Vascular Intimal Hyperplasia after Arterial Injury. Mol Med. 2017;23:92‐100.10.2119/molmed.2016.00222546817328332696Search in Google Scholar

102. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38.10.1056/NEJMc2007575716126232268022Search in Google Scholar

103. Zhou B, She J, Wang Y, Ma X. Venous thrombosis and arteriosclerosis obliterans of lower extremities in a very severe patient with 2019 novel coronavirus disease: a case report. J Thromb Thrombolysis. 2020; doi:10.1007/s11239-020-02084-w.10.1007/s11239-020-02084-w716525332306290Search in Google Scholar

104. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844‐847.10.1111/jth.14768716650932073213Search in Google Scholar

105. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727‐732.10.1080/22221751.2020.1746199717033332196410Search in Google Scholar

106. Iba T, Levy JH, Warkentin TE, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17(11):1989‐1994.10.1111/jth.1457831410983Search in Google Scholar

107. Zeng H, Pappas C, Belser JA, et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol. 2012;86(2):667‐678.10.1128/JVI.06348-11325583222072765Search in Google Scholar

108. Maniatis NA, Orfanos SE. The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care. 2008;14(1):22‐30.10.1097/MCC.0b013e3282f269b918195622Search in Google Scholar

109. Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost. 2013;11 Suppl 1:233‐241.10.1111/jth.1226123809127Search in Google Scholar

110. Abret N, Britton GJ, Gruber C, Hegde S, Kim J, et al. The Sinai Immunology Review Project. Immunology of COVID-19: Current state of the science. Immunity. 2020.Search in Google Scholar

111. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1986‐1994.10.1056/NEJMoa03068512682352Search in Google Scholar

112. Wong RS, Wu A, To KF, et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003;326(7403):1358‐1362.10.1136/bmj.326.7403.135816212412816821Search in Google Scholar

113. Xiang-Hua Y, Le-Min W, Ai-Bin L, et al. Severe acute respiratory syndrome and venous thromboembolism in multiple organs. Am J Respir Crit Care Med. 2010;182(3):436‐437.10.1164/ajrccm.182.3.43620675682Search in Google Scholar

114. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523‐534.10.1038/nrmicro.2016.81709782227344959Search in Google Scholar

115. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD. Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis. 2011;52(2):e14‐e17.10.1093/cid/ciq12521288835Search in Google Scholar

116. Hüzmeli C, Saglam M, Arıkan A, Doner B, Akıncı G, Candan F. Infrarenal Aorta Thrombosis Associated with H1N1 Influenza A Virus Infection. Case Rep Infect Dis. 2016;2016:9567495.10.1155/2016/9567495510785327872775Search in Google Scholar

117. Ishiguro T, Matsuo K, Fujii S, Takayanagi N. Acute thrombotic vascular events complicating influenza-associated pneumonia. Respir Med Case Rep. 2019;28:100884.10.1016/j.rmcr.2019.100884658223631245274Search in Google Scholar

118. Williams B, Baker AQ, Gallacher B, Lodwick D. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension. 1995;25(5):913‐917.10.1161/01.HYP.25.5.913Search in Google Scholar

119. Victorino GP, Newton CR, Curran B. Effect of angiotensin II on microvascular permeability. J Surg Res. 2002;104(2):77‐81.10.1006/jsre.2002.641212020123Search in Google Scholar

120. Dielis AW, Smid M, Spronk HM, et al. The prothrombotic paradox of hypertension: role of the renin-angiotensin and kallikrein-kinin systems. Hypertension. 2005;46(6):1236‐1242.10.1161/01.HYP.0000193538.20705.2316286563Search in Google Scholar

121. Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium: diverse signals and effects. Hypertension. 2005;45(2):163‐169.10.1161/01.HYP.0000153321.13792.b915630047Search in Google Scholar

122. Celi A, Cianchetti S, Dell’Omo G, Pedrinelli R. Angiotensin II, tissue factor and the thrombotic paradox of hypertension. Expert Rev Cardiovasc Ther. 2010;8(12):1723‐1729.10.1586/erc.10.16121108554Search in Google Scholar

123. Jagroop IA, Mikhailidis DP. Angiotensin II can induce and potentiate shape change in human platelets: effect of losartan. J Hum Hypertens. 2000;14(9):581‐585.10.1038/sj.jhh.100110210980590Search in Google Scholar

124. Ding YA, MacIntyre DE, Kenyon CJ, Semple PF. Angiotensin II effects on platelet function. J Hypertens Suppl. 1985;3(3):S251‐S253.Search in Google Scholar

125. Larsson PT, Schwieler JH, Wallén NH. Platelet activation during angiotensin II infusion in healthy volunteers. Blood Coagul Fibrinolysis. 2000;11(1):61‐69.10.1097/00001721-200011010-00007Search in Google Scholar

126. Langeggen H, Berge KE, Macor P, et al. Detection of mRNA for the terminal complement components C5, C6, C8 and C9 in human umbilical vein endothelial cells in vitro. APMIS. 2001;109(1):73‐78.10.1111/j.1600-0463.2001.tb00016.x11297196Search in Google Scholar

127. Langeggen H, Pausa M, Johnson E, Casarsa C, Tedesco F. The endothelium is an extrahepatic site of synthesis of the seventh component of the complement system. Clin Exp Immunol. 2000;121(1):69‐76.10.1046/j.1365-2249.2000.01238.x190567610886241Search in Google Scholar

128. Dauchel H, Julen N, Lemercier C, et al. Expression of complement alternative pathway proteins by endothelial cells. Differential regulation by interleukin 1 and glucocorticoids. Eur J Immunol. 1990;20(8):1669‐1675.10.1002/eji.18302008082145163Search in Google Scholar

129. Warren HB, Pantazis P, Davies PF. The third component of complement is transcribed and secreted by cultured human endothelial cells. Am J Pathol. 1987;129(1):9‐13.Search in Google Scholar

130. Fischetti F, Tedesco F. Cross-talk between the complement system and endothelial cells in physiologic conditions and in vascular diseases. Autoimmunity. 2006;39(5):417‐428.10.1080/0891693060073971216923542Search in Google Scholar

131. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19?. Nat Rev Immunol. 2020;20(6):343‐344.10.1038/s41577-020-0320-7718714432327719Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, other