Accesso libero

Non-Hydrostatic Transitional Open-Channel Flows from a Supercritical to a Subcritical State

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abbott, M. B. – Rodenhuis, G. S. (1972) A numerical simulation of the undular hydraulic jump. J. Hydraul. Res., 10(3), 239–257.10.1080/00221687209500160 Search in Google Scholar

Abbott, M. B. – Petersen, H. M. – Skovgaard, O. (1978) On the numerical modeling of short waves in shallow water. J. Hydraul. Res., 16(3), 173–204.10.1080/00221687809499616 Search in Google Scholar

Bakhmeteff, B. A. – Matzke, A. E. (1936) The hydraulic jump in terms of dynamic similarity. Trans. ASCE, 101(1), 630–647.10.1061/TACEAT.0004708 Search in Google Scholar

Bashforth, F. – Adams, J. C. (1883) An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops. Cambridge University Press, Cambridge, UK, 18–19. Available online: https://www.archive.org/details/attempttest00bashrich (accessed on 04 May 2020). Search in Google Scholar

Bayon-Barrachina, A. – Lopez-Jimenez, P. A. (2015) Numerical analysis of hydraulic jumps using OpenFOAM. J. Hydroinform., 17, 662–678. Search in Google Scholar

Bélanger, J. B. (1845) Notes sur l’Hydraulique (Notes on Hydraulic Engineering). École Royale des Ponts et Chaussées, Paris, France, Session 1845–1846, 84–85 [in French]. Available online: https://patrimoine.enpc.fr/document/ENPC02_COU_4_2381_1845 (accessed on 10 July 2020). Search in Google Scholar

Benjamin, T. B. – Lighthill, M. J. (1954) On cnoidal waves and bores. Proc. Roy. Soc. Lond. A, 224(1159), doi:10.1098/rspa.1954.0172.10.1098/rspa.1954.0172 Search in Google Scholar

Bickley, W. G. (1941) Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27, doi:10.2307/3606475.10.2307/3606475 Search in Google Scholar

Bose, S. – Castro-Orgaz, O. – Dey, S. (2012) Free-surface profiles of undular hydraulic jumps. J. Hydraul. Eng., 138(4), 362–366.10.1061/(ASCE)HY.1943-7900.0000510 Search in Google Scholar

Boussinesq, J. (1877) Essai Sur la Théorie des Eaux Courantes (Essay on the Theory of Water Flow). Mémoires Présentés par Divers Savants à l’Académie des Sciences, Paris, 23(1), 196–198 [in French]. Search in Google Scholar

Chanson H. (1995) Flow Characteristics of Undular Hydraulic Jumps: Comparison with Near-Critical Flows. Research Report CH45/95. Department of Civil Engineering, University of Queensland, Brisbane, Australia. Search in Google Scholar

Chanson, H. – Montes, J. S. (1995) Characteristics of undular hydraulic jumps. Experimental apparatus and flow patterns. J. Hydraul. Eng., 121(2), 129–144. Search in Google Scholar

Chanson, H. (2000) Boundary shear stress measurements in undular flows: Application to standing wave bed forms. Water Resour. Res., 36(10), 3063–3076.10.1029/2000WR900154 Search in Google Scholar

Chanson H. (2009) Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B/ Fluids, 28(2), 191–210.10.1016/j.euromechflu.2008.06.004 Search in Google Scholar

Chow, V. T. (1959) Open-Channel Hydraulics. McGraw-Hill, New York, NY, USA, 60. Search in Google Scholar

Dey, S. – Sarkar, A. (2008) Characteristics of turbulent flow in submerged jumps on rough beds. J. Eng. Mech., 134(1), doi:10.1061/ (ASCE)0733-9399(2008)134:1(49).10.1061/(ASCE)0733-9399(2008)134:1(49) Search in Google Scholar

Fawer, C. (1937) Etude de Quelques Écoulements Permanents à Filets Courbes (Study of Some Permanent Flows with Curved Filaments). Docteur ès Sciences Techniques Thèse, Université de Lausanne, Lausanne, Switzerland [in French], doi:10.5075/epfl-thesis-9. Search in Google Scholar

Fenton, J. D. – Zerihun, Y. T. (2007) A Boussinesq approximation for open-channel flow. In: Proceedings of the 32nd Congress, IAHR, Venice, Italy, 2–6 July, CD-ROM. Search in Google Scholar

Gharangik, A. M. (1988) Numerical Simulation of Hydraulic Jump. Master’s Thesis, Washington State University, Pullman, WA, USA. Search in Google Scholar

Grillhofer, W. – Schneider, W. (2003) The undular hydraulic jump in turbulent open-channel flow at large Reynolds numbers. Phys. Fluids, 15(3), 730–735.10.1063/1.1538249 Search in Google Scholar

Gotoh, H. – Yasuda, Y. – Ohtsu, I. (2005) Effect of channel slope on flow characteristics of undular hydraulic jumps. WIT Trans. Ecol. Environ., 83, 33–43. Search in Google Scholar

Govinda Rao, N. S. – Rajaratnam, N. (1963) The submerged hydraulic jump. J. Hydraul. Div., 89(HY1), 139–162.10.1061/JYCEAJ.0000822 Search in Google Scholar

Hager, W. H. – Hutter, K. (1983) Approximate treatment of the plane hydraulic jump with separation zone above the flow zone. J. Hydraul. Res., 21(3), 195–204.10.1080/00221688309499414 Search in Google Scholar

Hager, W. H. – Hutter, K. (1984) On pseudo-uniform flow in open-channel hydraulics. Acta Mech., 53, 183–200. Search in Google Scholar

Hager, W. H. (1993) Classical hydraulic jump: Free-surface profiles. Can. J. Civ. Eng., 20(3), 536–539.10.1139/l93-068 Search in Google Scholar

Khan, A. A. – Steffler, P. M. (1996) Physically based hydraulic jump model for depth-averaged computation. J. Hydraul. Eng., 122, 540–548. Search in Google Scholar

Liu, M. – Rajaratnam, N. – Zhu, D. (2004) Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraul. Eng., 130, 511–520. Search in Google Scholar

Long, D. (1991) An Experimental Investigation and κ – ε Turbulence Modeling of Submerged Hydraulic Jumps. Ph.D. Thesis, Department of Civil Engineering, University of Alberta, Edmonton, AL, Canada. Search in Google Scholar

Long, D. – Steffler, P. M. – Rajaratnam, N. (1991) A numerical study of submerged hydraulic jumps. J. Hydraul. Res., 29(3), 293–308.10.1080/00221689109498435 Search in Google Scholar

Ma, F. – Hou, Y. – Prinos, P. (2001) Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res., 39(5), 493–503.10.1080/00221686.2001.9628274 Search in Google Scholar

Madsen, P. A. – Simonsen, H. J. – Pan, C. H. (2005) Numerical simulation of tidal bores and hydraulic jumps. Coast. Eng., 52, 409–433. Search in Google Scholar

Mandrup-Andersen, V. (1978) Undular hydraulic jump. J. Hydraul. Div., 104(HY8), 1185–1188.10.1061/JYCEAJ.0005048 Search in Google Scholar

McCorquodale, J. A. – Khalifa, A. (1983) Internal flow in hydraulic jumps. J. Hydraul. Eng., 109(5), doi:10.1061/(ASCE)0733-9429(1983)109:5(684).10.1061/(ASCE)0733-9429(1983)109:5(684) Search in Google Scholar

Mignot, E. – Cienfuegos, R. (2010) Energy dissipation and turbulent production in weak hydraulic jumps. J. Hydraul. Eng., 136, doi:10.1061/(ASCE)HY.1943-7900.0000124.10.1061/(ASCE)HY.1943-7900.0000124 Search in Google Scholar

Montes, J. S. (1986) A study of the undular jump profile. In: Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 8–12 Dec., 148–151. Search in Google Scholar

Montes, J. S. – Chanson, H. (1998) Characteristics of undular hydraulic jumps. Experiments and analysis. J. Hydraul. Eng., 124(2), 192–205.10.1061/(ASCE)0733-9429(1998)124:2(192) Search in Google Scholar

Ohtsu, I. – Yasuda, Y. – Gotoh, H. (2001) Hydraulic condition for undular-jump formations. J. Hydraul. Res., 39(2), 203–209.10.1080/00221680109499821 Search in Google Scholar

Padulano, R. – et al. (2017) Hydraulic design of a USBR type II stilling basin. J. Irrig. Drain. Eng., 143(5), doi:10.1061/(ASCE) IR.1943-4774.0001150. Search in Google Scholar

Qingchao, L. – Drewes, U. (1994) Turbulence characteristics in free and forced hydraulic jumps. J. Hydraul. Res., 32(6), 877–898.10.1080/00221689409498696 Search in Google Scholar

Rajaratnam, N. – Subramanya, K. (1968) Profiles of the hydraulic jump. J. Hydraul. Div., 94(HY3), 663–674.10.1061/JYCEAJ.0001810 Search in Google Scholar

Reinauer, R. – Hager, W. H. (1995) Non-breaking undular hydraulic jump. J. Hydraul. Res., 33(5), 683–698.10.1080/00221689509498564 Search in Google Scholar

Resch, F. J. – Leutheusser, H. J. (1972a) Reynolds stress measurements in hydraulic jumps. J. Hydraul. Res., 10(4), 409–429.10.1080/00221687209500033 Search in Google Scholar

Resch, F. J. – Leutheusser, H. J. (1972b) Le ressaut hydraulique: Mesure de turbulence dans la région diphasique (The hydraulic jump: Turbulence measurements in the two-phase flow region). La Houille Blanche, 4, 279–293 [in French].10.1051/lhb/1972021 Search in Google Scholar

Resch, F. J. – Leutheusser, H. J. – Alemu, S. (1974) Bubbly two-phase flow in hydraulic jump. J. Hydraul. Div., 100(HY1), 137–149.10.1061/JYCEAJ.0003850 Search in Google Scholar

Richard, G. L. – Gavrilyuk, S. L. (2013) The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech., 725, 492–521. Search in Google Scholar

Ryabenko, A. A. (1990) Conditions favorable to the existence of an undulating jump. Hydrotech. Constr., 24(12), doi:10.1007/BF01434602.10.1007/BF01434602 Search in Google Scholar

Takahashi, M. – Ohtsu, I. (2017) Effects of inflows on air entrainment in hydraulic jumps below a gate. J. Hydraul. Res., 55(2), 259–268.10.1080/00221686.2016.1238016 Search in Google Scholar

Witt, A. – Gulliver, J. – Shen, L. (2018) Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids, 172, 162–180. Search in Google Scholar

Zerihun, Y. T. (2008) Numerical modeling of open-channel flow with dual free surfaces – Free overfall. In: Proceedings of the 8th International Conference on Hydro-Science and -Engineering, Nagoya, Japan, 8–12 Sept., CD-ROM. Search in Google Scholar

Zerihun, Y. T. (2016) Modeling free-surface flow with curvilinear streamlines by a non-hydrostatic model. J. Hydrol. Hydromech., 64(3), 281–288.10.1515/johh-2016-0028 Search in Google Scholar

Zerihun, Y. T. (2017a) A numerical study of non-hydrostatic shallow flows in open channels. Arch. Hydro-Eng. Environ. Mech., 64(1), 17–35.10.1515/heem-2017-0002 Search in Google Scholar

Zerihun, Y. T. (2017b) A non-hydrostatic depth-averaged model for hydraulically steep free-surface flows. Fluids, 2(4), doi:10.3390/fluids2040049.10.3390/fluids2040049 Search in Google Scholar

Zigrang, D. J. – Sylvester, N. D. (1982) Explicit approximations to the solution of Colebrook’s friction factor equation. AIChE J., 28(3), 514–515.10.1002/aic.690280323 Search in Google Scholar

eISSN:
1338-3973
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other