Accesso libero

Non-Linear Analysis of an RC Beam Without Shear Reinforcement with a Sensitivity Study of the Material Properties of Concrete

INFORMAZIONI SU QUESTO ARTICOLO

Cita

ACI 318-14 (1998)Building Code Requirements for Structural Concrete. Farmington Hills: ACI Committee 318; 2014. 7. ACIASCE Committee 445. Recent approaches to shear design of structural concrete. J Struct Eng. 1998;124(12):1375-1417.Search in Google Scholar

ACI Committee 318 (2011)Building code requirements for structural concrete (ACI 318-11) and commentary, American Concrete Institute, Farmington Hills, Mich., USA, 2011, pp. 111.Search in Google Scholar

AIJ (2008)Recommendations for Practice of Thermal Cracking Control of Massive Concrete in Building, Architectural Institute of Japan, AIJ, 2008, 69 pp.Search in Google Scholar

Alhussainy, F. – Hasan, H.A. – Neaz Sheikh, M. – Hadi, M.N.S. (2019)A new method for direct tensile testing of concrete, Journal of Testing and Evaluation, vol. 47, No. 2. DOI: 10.1520/JTE20170067.10.1520/JTE20170067Search in Google Scholar

Arioglu, N. – Girgin, Z.C. – Arioglu, E. (2006) Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concrete up to 120 MPa and Its Application in Strength Criterion, ACI Materials Journal, vol. 103, No. 1, Jan.-Feb., pp. 18-24.Search in Google Scholar

Augustín, T. – Fillo, L. – Halvonik, J. – Marčiš, M. (2018)Punching resistance of flat slabs with openings - experimental investigation, Solid State Phenomena, vol. 272, pp. 41-46. DOI: 10.4028/www.scientific.net/SSP.272.4110.4028/www.scientific.net/SSP.272.41Search in Google Scholar

Bazant, Z. – Planas, J. (1998)Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press Boca Raton, FL, USA.Search in Google Scholar

Brandt, A.M. (2008)Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, vol. 86, Nos. (1-3). pp. 3-9. DOI: 10.1016/j.compstruct.2008.03.006.10.1016/j.compstruct.2008.03.006Search in Google Scholar

Cervenka, V. – Jendele, L. – Cervenka J. (2016)ATENA Program documentation - Part 1: Theory. Cervenka Consulting. Pratur. 2016.Search in Google Scholar

CEB-FIP MODEL CODE 1990 (1993): DESIGN CODE, Final version published by Thomas Telford Ltd., London, UKSearch in Google Scholar

Collins, MP – Bentz, E– Sherwood, EG (2008) Where is shear reinforcement required? A review of research results and design procedures, ACI Struct J. vol. 105, No. 5, pp. 590-600.Search in Google Scholar

Eurocode 2 (2004) Design of concrete structures EN1992-1-1.Search in Google Scholar

EHE-08 (2008), Instrucción de Hormigón Estructural. Ministerio de Fomento: Centro de Publicaciones, Madrid, 4th ed. (in Spanish).Search in Google Scholar

Fenwick, RC – Paulay T. (1968)Mechanisms of shear resistance of concrete beams. J Struct Div, vol. 94, No. 10, pp. 2325-2350.10.1061/JSDEAG.0002092Search in Google Scholar

Fernández Montes D – González Valle E – Díaz Heredia E. (2018) Investigation of minimum shear strength of reinforced concrete elements without transverse reinforcement, Structural Concrete. vol. 19, pp. 86–97. DOI: 10.1002/suco.201700013.10.1002/suco.201700013Search in Google Scholar

Gardner, N.J. (1990), Effect of Temperature on the Early-Age Properties of Type I, Type III, and Type I/Fly Ash Concretes, ACI Materials Journal, 1990 87 (1), Jan.-Feb. pp. 529-536.Search in Google Scholar

Geng, J. – Sun, Q. – Zhang, Y. – Cao, L. – Zhang, W. (2017)Studying the dynamic damage failure of concrete based on acoustic emission, Construction and Building Materials. vol. 149, pp. 9-16, DOI:10.1016/j.conbuildmat.2017.05.054.10.1016/j.conbuildmat.2017.05.054Search in Google Scholar

Gu Xianglin – Jin Xianyu – Zhou Yong (2016)Basic Principles of Concrete Structures, Springer Berlin Heidelberg, Germany.10.1007/978-3-662-48565-1Search in Google Scholar

Hajime, O. (1997)Self-compacting high-performance concrete, Concr. Int., vol. 19, No. 7, pp. 50-54.Search in Google Scholar

Huang, H. – An, M. – Wang, Y. – Yu, Z. – Ji, W. (2019)Effect of environmental thermal fatigue on concrete performance based on mesostructural and microstructural analyses. Construction and Building Materials, vol. 207, pp. 450-462, DOI:10.1016/j.conbuildmat.2019.02.072.10.1016/j.conbuildmat.2019.02.072Search in Google Scholar

Herbrand, M. – Hegger, J. (2013)Experimental investigations on the influence of an external prestressing on the shear capacity of prestressed continuous beams. Bauingenieur. vol. 88, No. 12, pp. 509-517.Search in Google Scholar

Iman, R.C. – Conover, W.J. (1982)A Distribution Free Approach to Inducing Rank Correlation Among Input Variables, Communications in Statistics, vol. B11: 311-334.Search in Google Scholar

ISO 1920-4 (2005) Testing of concrete -- Part 4: Strength of hardened concrete.Search in Google Scholar

ISO 1920-10 (2010) Testing of concrete - Part 10: Determination of static modulus of elasticity in compression.Search in Google Scholar

ISO 2394 (1998) General Principles on Reliability for Structures.Search in Google Scholar

ISO JCSS (2001) Probabilistic Model Code, JCSS Working Material, http://www.jcss.ethz.ch/.Search in Google Scholar

JCI (2008)Guidelines for Control of Cracking of Mass Concrete, Japan Concrete Institute, JCI, August, 2011.Search in Google Scholar

JSCE (2002)Standard specifications for concrete structures, Materials and Construction, Japan Society of Civil Engineers, JSCE, No.6.Search in Google Scholar

JSCE (2007)Standard specifications for concrete structures, Materials and Construction, Japan Society of Civil Engineers, JSCE, No.7.Search in Google Scholar

Karihaloo, B. (1995)Fracture Mechanics of Concrete. Longman Scientific & Technical, New York, USA, 1995.Search in Google Scholar

Králik, J. (2013)Nonlinear probabilistic analysis of the reinforced concrete structure failure of a nuclear power plant considering degradation effects, Applied Mechanics and Materials, vol. 249-250, pp. 1087-1098. DOI: 10.4028/www.scientific.net/AMM.249-250.1087.10.4028/www.scientific.net/AMM.249-250.1087Search in Google Scholar

Kubošek, J. (2015) Nonlinear analysis of reinforced concrete structures, Diploma thesis, VŠB-TU Ostrava, Czech Republic.Search in Google Scholar

Li, Y. – Li, Y. – Wang, R. (2019) Quantitative evaluation of elastic modulus of concrete with nanoidentation and homogenization method. Construction and Building Materials, vol. 212, pp. 295-303, DOI:10.1016/j.conbuildmat.2019.04.002.10.1016/j.conbuildmat.2019.04.002Search in Google Scholar

Model Code 2010 - Final Draft (2012), fib, Bulletin Nos. 65 and 66. 1-2.Search in Google Scholar

Neville, A. M. (1996)Properties of concrete, 4th ed., Addison Wesley Longman Limited.Search in Google Scholar

Novak, D. – Vorechovsky, M. – Rusina, R. (2011)FReET v.1.5 - Program Documentation. User’s and Theory Guides. VUT Brno and Cervenka Consulting, CZ.Search in Google Scholar

Oluokun, F.A. – Burdette, E.G. – Deatherage, J.H. (1991), Splitting tensile strength and compressive strength relationships at early ages, ACI Materials Journal, 88 (2), Mar.-Apr., pp 115-121.Search in Google Scholar

Oluokun, F.A. (1991) Prediction of concrete tensile strength from its compressive strength: Evaluation of existing relationship for normal weight concrete, ACI Materials Journal, vol. 88, No. 3, May-June 1991, pp. 302-309.Search in Google Scholar

Park, HG. – Kang, S. – Choi, KK.Analytical model for shear strength of ordinary and prestressed concrete beams. Eng Struct. vol. 46, pp. 94-103.10.1016/j.engstruct.2012.07.015Search in Google Scholar

Raphael, J.M. (1984), Tensile strength of concrete, ACI Journal, Proceedings, vol. 81, No. 2, Mar.-Apr. 1984, pp. 158-165.Search in Google Scholar

RILEM (2018): About Rilem [Online], url: http://www.rilem.net [Accessed on 4 May 2018].Search in Google Scholar

Rombach, G. (2011) Finite-element Design of Concrete Structures: Practical problems and their solutions, 2d ed. ECE Publishing.Search in Google Scholar

Ros, S. – Shima, H. (2013)Relationship between splitting tensile strength and compressive strength of concrete at early age with different types of cements and curing temperature histories, Conference: 13th Annual Convention of Japan Concrete Institute, 35 (1).Search in Google Scholar

Special Issue on Shear (2018), Structural Concrete, vol. 19, No. 1, pp. 1-328, Feb. 2018, DOI:10.1002/suco.20187001410.1002/suco.201870014Search in Google Scholar

Setareh, M. – Darvas R. (2016)Concrete Structures (2d Ed.), Springer.10.1007/978-3-319-24115-9Search in Google Scholar

Sucharda, O. – Brožovský, J. (2013)Bearing capacity analysis of reinforced concrete beams, International Journal of Mechanics, vol. 7, No. 3, pp. 192-200.Search in Google Scholar

Sucharda, O. – Bilek, V. – Smirakova, M. – Kubosek, J. – Cajka, R. (2017) Comparative Evaluation of Mechanical Properties of Fibre Reinforced Concrete and Approach to Modelling of Bearing Capacity Ground Slab, Periodica Polytechnica Civil Engineering, vol. 61, no. 4. DOI: 10.3311/PPci.10688.10.3311/PPci.10688Search in Google Scholar

Sucharda, O. – Konecny, P. (2018)Recommendation for the modelling of 3D non-linear analysis of RC beam tests, Computers and Concrete, vol. 21, No. 1, pp. 11-20, DOI:10.12989/cac.2018.21.1.011.Search in Google Scholar

Strauss, A. – Zimmermann, T. – Lehký, D. – Novák, D. – Keršner, Z. (2014)Stochastic fracture-mechanical parameters for the performance-based design of concrete structures, Struct. Concrete, vol. 15, No. 3, pp. 380-394.Search in Google Scholar

Strauss, A. – Benko, V. – Täubling, B. – Valašík, A. – Čuhák, M. (2017)Reliability of slender columns [Zuverlässigkeit schlanker Betonstützen: Bewertung des Stabilitätsverhaltens], Beton- und Stahlbetonbau, vol. 112, No. 7, pp. 392-401, (in German). DOI: 10.1002/best.201700019.10.1002/best.201700019Search in Google Scholar

Tanikura, I. – Shintani, R. – Sainoki, A. – Watanabe, S. – Obara, Y. (2018) Quantitative comparison of chipping- and hydrodemolition-induced microscopic damage evolution in concrete substrates, Construction and Building Materials, vol. 164, 2018, pp. 193-205, DOI:10.1016/j.conbuildmat.2017.12.220.10.1016/j.conbuildmat.2017.12.220Search in Google Scholar

Taylor HPJ (1974) The fundamental behavior of reinforced concrete beams in bending and shear. Special Publication SP-42, ACI, 43–78.Search in Google Scholar

Valašík, A. – Benko, V. – Strauss, A. – Täubling, B. (2018)Reliability assessment of slender concrete columns at the stability failure, AIP Conference Proceedings, vol. 1922, art. no. 130010. DOI: 10.1063/1.5019140.10.1063/1.5019140Search in Google Scholar

Vida, R. – Halvonik, J. (2017) Shear assessment of concrete bridge deck slabs, Key Engineering Materials, 2017738, pp. 110-119. DOI: 10.4028/www.scientific.net/KEM.738.110.10.4028/www.scientific.net/KEM.738.110Search in Google Scholar

Wu, L. – Chung C. N. – Major Z. – Laurent, A. – Ludovic, N. (2018) From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced composites. Composite Structures, vol. 189, DOI:10.1016/j.compstruct.2018.01.05.Search in Google Scholar

Wieczorek, B. (2013)Idea of a simplified model to determination of the load capacity of an inner slab-column connection after its punching, Procedia Engineering, vol. 65, pp. 126-134. DOI: 10.1016/j.proeng.2013.09.022.10.1016/j.proeng.2013.09.022Search in Google Scholar

Wieczorek, B. (2017)Numerical Analysis of the Inner Slab-Column Connection of RC Structures Loaded Eccentrically, Procedia Engineering, vol. 190, pp. 668-675. DOI: 10.1016/j.proeng.2017.05.395.10.1016/j.proeng.2017.05.395Search in Google Scholar

eISSN:
1338-3973
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other