Accesso libero

Numerical Evaluation of Partially Strengthened Floating Granular Pile Raft With Vertical and Radial Displacement Compatibility

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Figure 1

Force and stresses on a partially strengthened piled raft foundation.
Force and stresses on a partially strengthened piled raft foundation.

Figure 2

(a) Stresses on the GP and raft due to soil. (b) Stresses in the soil due to GP and raft. (c) Stresses on any ith element of the GP.
(a) Stresses on the GP and raft due to soil. (b) Stresses in the soil due to GP and raft. (c) Stresses on any ith element of the GP.

Figure 3

Variation of SIF, ip, with comparative strengthening, Kp, of GP– effect of strengthening factor, μr, and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp =10, dr/dp =3, λr =0.4).
Variation of SIF, ip, with comparative strengthening, Kp, of GP– effect of strengthening factor, μr, and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp =10, dr/dp =3, λr =0.4).

Figure 4

Variation of SIF, ip, with comparative strengthening, μr, of GP– effect of comparative length of strengthening, Kp, of GP and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp =10, dr/dp=3, λr =4).
Variation of SIF, ip, with comparative strengthening, μr, of GP– effect of comparative length of strengthening, Kp, of GP and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp =10, dr/dp=3, λr =4).

Figure 5

Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative length, λr, of strengthening from top of GP and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp =10, μr=4).
Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative length, λr, of strengthening from top of GP and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp =10, μr=4).

Figure 6

Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of strengthening factor, μr, and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp =10, λr =0.4).
Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of strengthening factor, μr, and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp =10, λr =0.4).

Figure 7

Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative size of raft, dr/dp, and stiffness factor, μr, on partially strengthened GP–raft foundation (Lp/dp =10, λr =0.4).
Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative size of raft, dr/dp, and stiffness factor, μr, on partially strengthened GP–raft foundation (Lp/dp =10, λr =0.4).

Figure 8

Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative length of GP, Lp/dp, and stiffness factor, μr, on partially strengthened GP– raft foundation (dr/dp=3, λr =0.4).
Variation of SIF, ip, considering radial displacement with comparative strengthening, Kp, of GP– effect of comparative length of GP, Lp/dp, and stiffness factor, μr, on partially strengthened GP– raft foundation (dr/dp=3, λr =0.4).

Figure 9

Variation of radial displacement impact factor, ir, with comparative length of pile z1 = z/Lp – effect of strengthening factor μr and comparative size of raft, dr/dp, and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp=10, Kp=100, λr =0.4).
Variation of radial displacement impact factor, ir, with comparative length of pile z1 = z/Lp – effect of strengthening factor μr and comparative size of raft, dr/dp, and radial and vertical settlement compatibility on partially strengthened GP–raft foundation (Lp/dp=10, Kp=100, λr =0.4).

Figure 10

Variation of radial SIF, ir, with the normalized depth, z1=z/Lp – effect of comparative strengthening, Kp, of GP and strengthening factor, μr, on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=5, λr=0.4).
Variation of radial SIF, ir, with the normalized depth, z1=z/Lp – effect of comparative strengthening, Kp, of GP and strengthening factor, μr, on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=5, λr=0.4).

Figure 11

Variation of radial SIF, ir, with the normalized depth, z1=z/Lp – effect of comparative strengthening, Kp, of GP and comparative length of strengthening, λr, on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp =3, μr=4).
Variation of radial SIF, ir, with the normalized depth, z1=z/Lp – effect of comparative strengthening, Kp, of GP and comparative length of strengthening, λr, on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp =3, μr=4).

Figure 12

Variation of normalized shear stresses, τ*= τ/(F/πdpLp), with radial compatibility of the normalized depth, z1 =z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=5, λr =4).
Variation of normalized shear stresses, τ*= τ/(F/πdpLp), with radial compatibility of the normalized depth, z1 =z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=5, λr =4).

Figure 13

Variation of normalized shear stresses, τ*= τ/(F/πdpLp), with radial compatibility of the normalized depth, z1=z/Lp – effect of stiffness factor, μ, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=3,μr=2).
Variation of normalized shear stresses, τ*= τ/(F/πdpLp), with radial compatibility of the normalized depth, z1=z/Lp – effect of stiffness factor, μ, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=3,μr=2).

Figure 14

Variation of normalized radial stresses, σr* = σr (πdpLp)/F, with the normalized depth, z1=z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, μr=2, λr=0.4).
Variation of normalized radial stresses, σr* = σr (πdpLp)/F, with the normalized depth, z1=z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, μr=2, λr=0.4).

Figure 15

Variation of normalized radial stresses, σr*= σr(πdpLp)/F, with the normalized depth, z1=z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=3, λr=0.4).
Variation of normalized radial stresses, σr*= σr(πdpLp)/F, with the normalized depth, z1=z/Lp – effect of stiffness factor, μr, and comparative strengthening, Kp, of GP on a partially strengthened GP–raft foundation (Lp/dp=10, dr/dp=3, λr=0.4).

Figure 16

Variation of SIF for any depth, ipd, with normalized depth, z1=z/Lp–effect of stiffness factor, μr, on homogeneous GP–raft and partially strengthened GP–raft (Lp/dp=10, dr/dp=3, λr=0.4).
Variation of SIF for any depth, ipd, with normalized depth, z1=z/Lp–effect of stiffness factor, μr, on homogeneous GP–raft and partially strengthened GP–raft (Lp/dp=10, dr/dp=3, λr=0.4).

Figure 17

Variation of SIF for any depth, ipd, with normalized depth, z1=z/Lp – effect of comparative length λr of strengthening from top of GP on partially strengthened GP–raft foundation (Lp/dp=10, Kp=50, μr=0.4).
Variation of SIF for any depth, ipd, with normalized depth, z1=z/Lp – effect of comparative length λr of strengthening from top of GP on partially strengthened GP–raft foundation (Lp/dp=10, Kp=50, μr=0.4).

Figure 18

Variation of contact pressure (pr* =Fr/q) with normalized distance from the center of raft R*=r/dp–effect of strengthening factor, μr, and vertical and radial compatibility of displacement on a partially strengthened GP–raft and solid raft (Kp =50, Lp/dp=10, dr/dp=3, λr=0.4).
Variation of contact pressure (pr* =Fr/q) with normalized distance from the center of raft R*=r/dp–effect of strengthening factor, μr, and vertical and radial compatibility of displacement on a partially strengthened GP–raft and solid raft (Kp =50, Lp/dp=10, dr/dp=3, λr=0.4).

Figure 19

Variation of contact pressure (pr* =Fr/q) with normalized distance from the center of raft R*=r/dp–effect of comparative strengthening, Kp, of GP and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp=10, μr=4, λr=0.4).
Variation of contact pressure (pr* =Fr/q) with normalized distance from the center of raft R*=r/dp–effect of comparative strengthening, Kp, of GP and comparative size of raft, dr/dp, on partially strengthened GP–raft foundation (Lp/dp=10, μr=4, λr=0.4).

Figure 20

Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp – effect of comparative length of strengthening of GP, μr, on a partially strengthen GP–raft foundation (Lp/dp=10, dr/dp=3,λr=0.4).
Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp – effect of comparative length of strengthening of GP, μr, on a partially strengthen GP–raft foundation (Lp/dp=10, dr/dp=3,λr=0.4).

Figure 21

Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp– effect of comparative length of GP, dr/dp, on a partially strengthen GP–raft foundation (Lp/dp=10,μr=4,λr=0.4).
Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp– effect of comparative length of GP, dr/dp, on a partially strengthen GP–raft foundation (Lp/dp=10,μr=4,λr=0.4).

Figure 22

Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp– effect of comparative length of strengthening of GP, λr, on a partially strengthen GP–raft foundation (Lp/dp=10, dr/dp=3,μr=4).
Variation of percentage load w. r. t. total load with the comparative strengthening of GP, Kp– effect of comparative length of strengthening of GP, λr, on a partially strengthen GP–raft foundation (Lp/dp=10, dr/dp=3,μr=4).
eISSN:
2083-831X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics