Accesso libero

FEM modelling of the static behaviour of reinforced concrete beams considering the nonlinear behaviour of the concrete

   | 30 set 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita

ACI Code 318-19: Building Code Requirements for Structural Concrete. (2019). ACI Code 318-19 Building Code Requirements for Structural Concrete 2019 Search in Google Scholar

ASTM International. C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. (2014). ASTM International C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression 2014 Search in Google Scholar

Calonius, K., Fedoroff, A., Kolari, K., Reijo, K., & Vilppo, J. (2019, October). Calibration of Abaqus CDP model parameters. In 32nd Nordic Seminar on Computational Mechanics, NSCM32, 51–54. University of Oulu. CaloniusK. FedoroffA. KolariK. ReijoK. VilppoJ. 2019 October Calibration of Abaqus CDP model parameters In 32nd Nordic Seminar on Computational Mechanics, NSCM32 51 54 University of Oulu Search in Google Scholar

Chróścielewski, J., Miśkiewicz, M., Pyrzowski, Ł, & Sobczyk, B. (2017). Damage analysis of tensioning cable anchorage zone of a bridge superstructure, using CDP ABAQUS material model. Archives of Civil Engineering, 63(3), 3–18. ChróścielewskiJ. MiśkiewiczM. PyrzowskiŁ SobczykB. 2017 Damage analysis of tensioning cable anchorage zone of a bridge superstructure, using CDP ABAQUS material model Archives of Civil Engineering 63 3 3 18 10.1515/ace-2017-0025 Search in Google Scholar

Dassault Systèmes. (2014). Abaqus 6.14: Abaqus Analysis User's Guide. Retrieved from http://130.149.89.49:2080/v6.14/books/usb/default.htm Dassault Systèmes 2014 Abaqus 6.14: Abaqus Analysis User's Guide Retrieved from http://130.149.89.49:2080/v6.14/books/usb/default.htm Search in Google Scholar

EN 12390-1 Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds. (2012). EN 12390-1 Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds 2012 Search in Google Scholar

EN 12390-13 Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression. (2013). EN 12390-13 Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression 2013 Search in Google Scholar

EN 1992-1-1 Eurocode: Design of concrete structures. Part 1-1: General rules, and rules for buildings. (2004). EN 1992-1-1 Eurocode: Design of concrete structures. Part 1-1: General rules, and rules for buildings 2004 Search in Google Scholar

Fedoroff, A., Calonius, K., & Kuutti, J. (2019). Behavior of the Abaqus CDP model in simple stress states. Rakenteiden Mekaniikka, 52(2), 87–113. FedoroffA. CaloniusK. KuuttiJ. 2019 Behavior of the Abaqus CDP model in simple stress states Rakenteiden Mekaniikka 52 2 87 113 10.23998/rm.75937 Search in Google Scholar

Jurowski, K., & Grzeszczyk, S. (2015). The influence of concrete composition on Young's modulus. Procedia Engineering, 108, 584–591. JurowskiK. GrzeszczykS. 2015 The influence of concrete composition on Young's modulus Procedia Engineering 108 584 591 10.1016/j.proeng.2015.06.181 Search in Google Scholar

Jurowski, K., & Grzeszczyk, S. (2018). Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete. Materials, 11(4), 477. JurowskiK. GrzeszczykS. 2018 Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete Materials 11 4 477 10.3390/ma11040477 Search in Google Scholar

Łuszczyk, K., Rogoża, A., Stachoń, T., Wojtowicz, A., & Ubysz, A. (2017). Discrete model of cracks in the reinforced concrete bending beams. In Строительство-формирование среды жизнедеятельности, 325–327. ŁuszczykK. RogożaA. StachońT. WojtowiczA. UbyszA. 2017 Discrete model of cracks in the reinforced concrete bending beams In Строительство-формирование среды жизнедеятельности 325 327 Search in Google Scholar

Musiał, M., & Grosel, J. (2016). Determining the Young's modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams. Construction and Building Materials, 121, 44–52. MusiałM. GroselJ. 2016 Determining the Young's modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams Construction and Building Materials 121 44 52 10.1016/j.conbuildmat.2016.05.150 Search in Google Scholar

Neville, A. M. (1977). Właściwości betonu [Properties of Concrete]. Warsaw: Arkady. NevilleA. M. 1977 Właściwości betonu [Properties of Concrete] Warsaw Arkady Search in Google Scholar

Neville, A.M. (2011). Properties of concrete (5th ed.). Harlow: Pearson Education Ltd. NevilleA.M. 2011 Properties of concrete 5th ed. Harlow Pearson Education Ltd Search in Google Scholar

Pędziwiatr, J. (2008). Influence of internal cracks on bond in cracked concrete structures. Archives of civil and mechanical engineering, 8(3), 91–105. PędziwiatrJ. 2008 Influence of internal cracks on bond in cracked concrete structures Archives of civil and mechanical engineering 8 3 91 105 10.1016/S1644-9665(12)60165-4 Search in Google Scholar

Pedziwiatr, J. (2009). The influence of the bond between concrete and reinforcement on tension stiffening effect. Magazine of Concrete Research, 61(6), 437–443. PedziwiatrJ. 2009 The influence of the bond between concrete and reinforcement on tension stiffening effect Magazine of Concrete Research 61 6 437 443 10.1680/macr.2008.00097 Search in Google Scholar

Polus, Ł., & Szumigała, M. (2019, March). Laboratory tests vs. FE analysis of concrete cylinders subjected to compression. AIP Conference Proceedings, 2078(1), 20089. PolusŁ. SzumigałaM. 2019 March Laboratory tests vs. FE analysis of concrete cylinders subjected to compression AIP Conference Proceedings 2078 1 20089 10.1063/1.5092092 Search in Google Scholar

Rewers, I. (2019, February). Numerical analysis of RC beam with high strength steel reinforcement using CDP model. In IOP Conference Series: Materials Science and Engineering, 471(2). IOP Publishing. RewersI. 2019 February Numerical analysis of RC beam with high strength steel reinforcement using CDP model In IOP Conference Series: Materials Science and Engineering 471 2 IOP Publishing 10.1088/1757-899X/471/2/022025 Search in Google Scholar

Sinaei, H., Shariati, M., Abna, A. H., Aghaei, M., & Shariati, A. (2012). Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS. Scientific Research and Essays, 7(21), 2002–2009. SinaeiH. ShariatiM. AbnaA. H. AghaeiM. ShariatiA. 2012 Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS Scientific Research and Essays 7 21 2002 2009 Search in Google Scholar

Szczecina, M., Tworzewski, P., & Uzarska, I. (2018). Numerical modeling of reinforced concrete beams, including the real position of reinforcing bars (Modelowanie numeryczne belek żelbetowych z uwzględnieniem rzeczywistego rozmieszczenia zbrojenia). Structure & Environment, 10(1), 28–38. SzczecinaM. TworzewskiP. UzarskaI. 2018 Numerical modeling of reinforced concrete beams, including the real position of reinforcing bars (Modelowanie numeryczne belek żelbetowych z uwzględnieniem rzeczywistego rozmieszczenia zbrojenia) Structure & Environment 10 1 28 38 10.30540/sae-2018-003 Search in Google Scholar

Szczecina, M., & Winnicki, A. (2015). Calibration of the CDP model parameters in Abaqus. In The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM15). SzczecinaM. WinnickiA. 2015 Calibration of the CDP model parameters in Abaqus In The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM15) Search in Google Scholar

Szczecina, M., & Winnicki, A. (2015). Numerical simulations of corners in RC frames using strut-and-tie method and CDP model. In COMPLAS XIII: proceedings of the XIII International Conference on Computational Plasticity: fundamentals and applications, 608–619. CIMNE. SzczecinaM. WinnickiA. 2015 Numerical simulations of corners in RC frames using strut-and-tie method and CDP model In COMPLAS XIII: proceedings of the XIII International Conference on Computational Plasticity: fundamentals and applications 608 619 CIMNE Search in Google Scholar

Szczecina, M., & Winnicki, A. (2016). Selected aspects of computer modeling of reinforced concrete structures. Archives of Civil Engineering, 62(1), 51–64. SzczecinaM. WinnickiA. 2016 Selected aspects of computer modeling of reinforced concrete structures Archives of Civil Engineering 62 1 51 64 10.1515/ace-2015-0051 Search in Google Scholar

Szczecina, M., & Winnicki, A. (2017). Relaxation time in CDP model used for analyses of RC structures. Procedia engineering, 193, 369–376. SzczecinaM. WinnickiA. 2017 Relaxation time in CDP model used for analyses of RC structures Procedia engineering 193 369 376 10.1016/j.proeng.2017.06.226 Search in Google Scholar

Wahalathantri, B., Thambiratnam, D., Chan, T., & Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. In Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing, 260–264. Queensland University of Technology. WahalathantriB. ThambiratnamD. ChanT. FawziaS. 2011 A material model for flexural crack simulation in reinforced concrete elements using ABAQUS In Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing 260 264 Queensland University of Technology Search in Google Scholar

eISSN:
2083-831X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics