Accesso libero

Investigating the Effect of Rotor Design Changes on Mechanical Losses Due to Rotor-Fluid Interaction

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Deligant, M., Podevin, P., Descombes, G. “Experimental identification of turbocharger mechanical friction losses”, Energy 39 (1), pp. 388 – 394. 2012. DOI: 10.1016/j.energy.2011.12.049 Open DOISearch in Google Scholar

[2] Serrano, J., Olmeda, P., Tiseira, A., García-Cuevas, L., Lefebvre, A. “Theoretical and experimental study of mechanical losses in automotive turbochargers”, Energy 55, pp. 888 – 898, 2013. DOI: 10.1016/j.energy.2013.04.042 Open DOISearch in Google Scholar

[3] Novotný, P., Škara, P., Hliník, J. “The effective computational model of the hydrodynamics journal floating ring bearing for simulations of long transient regimes of turbocharger rotor dynamics”, International Journal of Mechanical Sciences 148, pp. 611 – 619, 2018. DOI: 10.1016/j.ijmecsci.2018.09.025 Open DOISearch in Google Scholar

[4] Novotný, P., Hrabovský, J. “Efficient computational modelling of low loaded bearings of turbocharger rotors”, International Journal of Mechanical Sciences 174, 2020. DOI: 10.1016/j.ijmecsci.2020.105505 Open DOISearch in Google Scholar

[5] Micio, M., Facchini, B., Innocenti, L., Simonetti, F. “Experimental Investigation on Leakage Loss and Heat Transfer in a Straight Through Labyrinth Seal”, Volume 5: Heat Transfer, Parts A and B. ASMEDC, pp. 967 – 979, 2012. DOI: 10.1115/GT2011-46402 Open DOISearch in Google Scholar

[6] He, H., Xu, S., Yan, R., Ji, J. “Study on the Seal Leakage of Turbocharger”, Fluid Machinery and Fluid Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 234 – 237, 2008. DOI: 10.1007/978-3-540-89749-1_33 Open DOISearch in Google Scholar

[7] Childs, P. R. N. “Rotating flow”, Amsterdam: Amsterdam, 2011. Search in Google Scholar

[8] Stachowiak, G., Batchelor, A. “Engineering tribology”, 4th ed. Oxford: Butterworth-Heinemann, 2014. ISBN 978-0-12-397047-3 Search in Google Scholar

[9] Kármán, Th. V. “Über laminare und turbulente Reibung”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 1 (4), pp. 233 – 252, 1921. DOI: 10.1002/zamm.19210010401 Open DOISearch in Google Scholar

[10] Theodorsen, T., Reiger, A. “Experiments on Drag of Revolving Disks, Cylinders, and Streamline Rods at High Speeds”, NACA Technical Report, pp. 367 – 384, 1977. Search in Google Scholar

[11] Singh, U. P. “Effects of Surface Roughness and Supply Inertia on Steady Performance of Hydrostatic Thrust Bearings Lubricated with Non-Newtonian Fluids”, Strojnícky časopis – Journal of Mechanical Engineering 71 (2), pp. 317 – 328, 2021. DOI: 10.2478/scjme-2021-0038 Open DOISearch in Google Scholar

[12] Novotný, P., Vacula, J., Kudláček, P. “Virtual Turbocharger as a Tool for Reality Simulation”, Proceedings of I4SDG Workshop 2021. Cham: Springer International Publishing, pp. 535 – 544, 2022. DOI: 10.1007/978-3-030-87383-7_57 Open DOISearch in Google Scholar

[13] Drápal, L., Novotný, P. “Torsional vibration analysis of crank train with low friction losses”, Journal of Vibroengineering 19 (8), pp. 5691 – 5701, 2017. DOI: 10.21595/jve.2017.17876 Open DOISearch in Google Scholar

[14] Novotný, P., Jonák, M., Vacula, J. “Evolutionary Optimisation of the Thrust Bearing Considering Multiple Operating Conditions in Turbomachinery”, In: International Journal of Mechanical Sciences, 2021. DOI: 10.1016/j.ijmecsci.2020.106240 Open DOISearch in Google Scholar

[15] Abbasi, A. R., Ghassemi, H., He, G. “Hydrodynamic Performance of the 3D Hydrofoil at the Coupled Oscillating Heave and Pitch Motions”, Strojnícky časopis - Journal of Mechanical Engineering 71 (2), pp. 1 – 18, 2021. DOI: 10.2478/scjme-2021-0013 Open DOISearch in Google Scholar

eISSN:
2450-5471
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics