Accesso libero

Geometrically Similar Rectangular Passive Micromixers and the Scaling Validity on Mixing Efficiency and Pressure Drops

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Ohno, K.I., Tachikawa, K., Manz, A. “Microfluidics: applications for analytical purposes in chemistry and biochemistry”, Electrophoresis 29, pp. 4443 – 4453, 2008.10.1002/elps.200800121Search in Google Scholar

[2] Zhang, C., Xu, J., Ma, W., Zheng, W. “PCR microfluidic devices for DNA amplification”, Biotechnology Advances, 24, pp. 243 – 284, 2006.10.1016/j.biotechadv.2005.10.002Search in Google Scholar

[3] Elvira, K.S., Solvas, X.C., Wootton, R.C. “The past, present and potential for microfluidic reactor technology in chemical synthesis”, Nature Chemistry 5, pp. 905 – 915, 2013.10.1038/nchem.1753Search in Google Scholar

[4] Demello, A. J. “Control and detection of chemical reactions in microfluidic systems”. Nature 442, pp. 394 – 402, 2006.10.1038/nature05062Search in Google Scholar

[5] Andersson, H., Van den Berg, A. “Microfluidic devices for cellomics: a review”, Sensors and Actuators B: Chemical 92, pp. 315 – 325, 2003.10.1016/S0925-4005(03)00266-1Search in Google Scholar

[6] Becker, H., Gärtner, C. “Polymer microfabrication technologies for microfluidic systems”, Analytical and Bioanalytical Chemistry 390, pp. 89 – 111, 2008.10.1007/s00216-007-1692-2Search in Google Scholar

[7] Morin, S.A., Shevchenko, Y., Lessing, J., Kwok, S.W., Shepherd, R.F., Stokes, A.A., Whitesides, G.M. “Using “Click-e-Bricks” to make 3D elastomeric structures”, Advanced Materials 26, pp. 5991 – 5999, 2014.10.1002/adma.201401642Search in Google Scholar

[8] Qin, D., Xia, Y., Whitesides, G.M. “Soft lithography for micro-and nanoscale patterning” Nature Protocols 5, pp. 491 – 502, 2010.10.1038/nprot.2009.234Search in Google Scholar

[9] Becker, H., Locascio, L.E. “Polymer microfluidic devices”. Talanta 56, pp. 267-287, 2002.10.1016/S0039-9140(01)00594-XSearch in Google Scholar

[10] Lisowski, P., Zarzycki, P.K. “Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development, applications and future trends”, Chromatographia 76, pp. 1201 – 1214, 2013.10.1007/s10337-013-2413-ySearch in Google Scholar

[11] Lee, S.W., Kim, D.S., Lee, S.S., Kwon, T.H. “A split and recombination micromixer fabricated in a PDMS three-dimensional structure”, Journal of Micromechanics and Microengineering 16, 1067, 2006.10.1088/0960-1317/16/5/027Search in Google Scholar

[12] Afzal, A., Kim, K.Y. “Passive split and recombination micromixer with convergent–divergent walls”, Chemical Engineering Journal 203, pp. 182 – 192, 2012.10.1016/j.cej.2012.06.111Search in Google Scholar

[13] Lee, J., Kwon, S. “Mixing efficiency of a multilaminationmicromixer with consecutive recirculation zones”, Chemical Engineering Science 64, pp. 1223 – 1231, 2009.10.1016/j.ces.2008.11.011Search in Google Scholar

[14] Nichols, K.P., Ferullo, J.R., Baeumner, A. J. “Recirculating passive micromixer with a novel sawtooth structure”, Lab on a Chip 6, pp. 242 – 246, 2006.10.1039/B509034BSearch in Google Scholar

[15] Tofteberg, T., Skolimowski, M., Andreassen, E., Geschke, O. “A novel passive micromixer: lamination in a planar channel system”, Microfluidics and Nanofluidics 8, pp. 209 – 215, 2010.10.1007/s10404-009-0456-zSearch in Google Scholar

[16] Hessel, V., Löwe, H., Schönfeld, F. “Micromixers - a review on passive and active mixing principles”. Chemical Engineering Science 60, pp. 2479 – 2501, 2005.10.1016/j.ces.2004.11.033Search in Google Scholar

[17] Veldurthi, N., Chandel, S., Bhave, T., Bodas, B. “Computational fluid dynamic analysis of poly(dimethyl siloxane) magnetic actuator based micromixer”, Sensors and Actuators B: Chemical 212, pp. 419 – 424, 2015. DOI: 10.1016/j.snb.2015.02.04810.1016/j.snb.2015.02.048Open DOISearch in Google Scholar

[18] Kamholz, A.E., Weigl, B.H., Finlayson, B.A., Yager, P. “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor”, Analytical Chemistry 71, pp. 5340 – 5347, 1999.10.1021/ac990504jSearch in Google Scholar

[19] Ismagilov, R. F., Stroock, A. D., Kenis, P. J., Whitesides, G., Stone, H. A. “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels”, Applied Physics Letters 76, pp. 2376 – 2378, 2000.10.1063/1.126351Search in Google Scholar

[20] Sullivan, S. P., Akpa, B. S., Matthews, S. M., Fisher, A. C., Gladden, L.F., Johns, M. L. “Simulation of miscible diffusive mixing in microchannels”, Sensors and Actuators B: Chemical 123, pp. 1142 – 1152, 2000.10.1016/j.snb.2006.10.025Search in Google Scholar

[21] Chen, J. M., Horng, T. L., Tan, W. Y. “Analysis and measurements of mixing in pressure-driven microchannel flow”, Microfluidics and Nanofluidics 2, pp. 455 – 469, 2006.10.1007/s10404-006-0092-9Search in Google Scholar

[22] Morf, W. E., Van der Wal, P. D., De Rooij, N. F. “Computer simulation and theory of the diffusion-and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels”, Analyticachimicaacta 622, pp. 175 – 181, 2008.10.1016/j.aca.2008.05.06318602550Search in Google Scholar

[23] Song, H., Wang, Y., Pant, K. “Scaling law for cross-stream diffusion in microchannels under combined electroosmotic and pressure driven flow”, Microfluidics and nanofluidics 14, pp. 371 – 382, 2013.10.1007/s10404-012-1058-8361198223554584Search in Google Scholar

[24] Engler, M., Kockmann, N., Kiefer, T., Woias, P. “Numerical and experimental investigations on liquid mixing in static micromixers”, Chem. Eng. J. 101, pp. 315 – 322, 2004.10.1016/j.cej.2003.10.017Search in Google Scholar

[25] Fox, R. W., McDonald, A. T. “Introduction to Fluid Mechanics”, 5th Edition, Wiley, 2001.Search in Google Scholar

[26] Ayodele, SG., Varnik, F., Raabe, D. “Effect of aspect ratio on transverse diffusive broadening: a lattice Boltzmann study”, Phys Rev E 80(1):016304, 2009.10.1103/PhysRevE.80.01630419658803Search in Google Scholar

[27] Stefan, G., Dzianik, F., Martin, J., Kabat, J. “Shell and Tube Heat Exchanger – the Heat Transfer Area Design Process”, Journal of Mechanical Engineering – Strojnícky časopis 67 (2), pp. 13 – 24, 2017. DOI: 10.1515/scjme-2017-001410.1515/scjme-2017-0014Open DOISearch in Google Scholar

[28] Chribik, A., Poloni, M., Lach, J., Jancosek, L., Peter, K. Zbranek, J. “Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics”, Journal of Mechanical Engineering – Strojnícky časopis 66 (1), pp. 37 – 46, 2016. DOI: 10.1515/scjme-2016-000910.1515/scjme-2016-0009Open DOISearch in Google Scholar

eISSN:
2450-5471
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics