Accesso libero

Gold Price Forecasting: A Novel Approach Based on Text Mining and Big-Data-Driven Model

,  e   
22 gen 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Baur, D. G., & Lucey, B. M. (2010). Is gold a hedge or a Safe Haven? An analysis of stocks, bonds, and gold. Financial Review, 45, 217–229. https://doi.org/10.32890/ijbf2012.9.1.8448 Search in Google Scholar

Cai, M., Pipattanasomporn, M., & Rahman, S. (2019). Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Applied energy, 236, 1078-1088. https://doi.org/10.1016/j.apenergy.2018.12.042 Search in Google Scholar

Choudhury, S., Ghosh, S., Bhattacharya, A., Fernandes, K. J., & Tiwari, M. K. (2014). A real-time clustering and SVM-based price-volatility prediction for optimal trading strategy. Neurocomputing, 131, 419–426. https://doi.org/10.1016/j.neucom.2013.10.002 Search in Google Scholar

Chen, H. H., Chen, M., & Chiu, C. C. (2016). The integration of artificial neural networks and text mining to forecast gold futures prices. Communications in Statistics-Simulation and Computation, 45(4), 1213-1225. https://doi.org/10.1080/03610918.2013.786780 Search in Google Scholar

Colladon, A. F. (2020). Forecasting election results by studying brand importance in online news. International Journal of Forecasting, 36(2), 414-427. https://doi.org/10.1016/j.ijforecast.2019.05.013 Search in Google Scholar

Dash, R., & Dash, P. (2016). An evolutionary hybrid fuzzy computationally efficient Egarch model for volatility prediction. Applied Soft Computing, 45, 40–60. https://doi.org/10.1016/j.asoc.2016.04.014 Search in Google Scholar

Del Vecchio, P., Mele, G., Ndou, V., & Secundo, G. (2018). Creating value from social big data: Implications for smart tourism destinations. Information Processing & Management, 54(5), 847-860. https://doi.org/10.1016/j.ipm.2017.10.006 Search in Google Scholar

Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep learning for event-driven stock prediction. IJCAI, 2327–2333. Search in Google Scholar

Gunduz, H., Yaslan, Y., & Cataltepe, Z. (2017). Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations. Knowledge-Based Systems, 137, 138–148. https://doi.org/10.1016/j.knosys.2017.09.023 Search in Google Scholar

Hemmatian, F., & Sohrabi, M. K. (2019). A survey on classification techniques for opinion mining and sentiment analysis. Artificial intelligence review, 52(3), 1495-1545. https://doi.org/10.1007/s10462-017-9599-6 Search in Google Scholar

Hu, H., Wang, L., Peng, L., & Zeng, Y. R. (2020). Effective energy consumption forecasting using enhanced bagged echo state network. Energy, 193, 116778. https://doi.org/10.1016/j.energy.2019.116778 Search in Google Scholar

Hu, H., Wang, L., & Lv, S. X. (2020). Forecasting energy consumption and wind power generation using deep echo state network. Renewable Energy, 154, 598-613. https://doi.org/10.1016/j.renene.2020.03.042 Search in Google Scholar

Ju, F. Y., & Hong, W. C. (2013). Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Applied Mathematical Modelling, 37(23), 9643-9651. https://doi.org/10.1016/j.apm.2013.05.016 Search in Google Scholar

Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25–37. https://doi.org/10.1016/j.eswa.2018.03.002 Search in Google Scholar

Kim, L., & Ju, J. (2019). Can media forecast technological progress?: A text-mining approach to the on-line newspaper and blog’s representation of prospective industrial technologies. Information Processing & Management, 56(4), 1506-1525. https://doi.org/10.1016/j.ipm.2018.10.017 Search in Google Scholar

Kristjanpoller, W., & Michell, K. (2018). A stock market risk forecasting model through integration of switching regime, ANFIS and GARCH techniques. Applied Soft Computing, 67, 106–116. https://doi.org/10.1016/j.asoc.2018.02.055 Search in Google Scholar

Kroner, K. F., Kneafsey, K. P., & Claessens, S. (1995). Forecasting volatility in commodity markets. Journal of Forecasting, 14, 77–95. https://doi.org/10.1002/for.3980140202 Search in Google Scholar

Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural computing and applications, 32, 17351-17360. https://doi.org/10.1007/s00521-020-04867-x Search in Google Scholar

Li, X., Shang, W., & Wang, S. (2019). Text-based crude oil price forecasting: A deep learning approach. International Journal of Forecasting, 35(4), 1548-1560. https://doi.org/10.1016/j.ijforecast.2018.07.006 Search in Google Scholar

Li, X., Ma, J., Wang, S., & Zhang, X. (2015). How does Google search affect trader positions and crude oil prices?. Economic Modelling, 49, 162-171. https://doi.org/10.1016/j.econmod.2015.04.005 Search in Google Scholar

Mitra, V., Sivaraman, G., Nam, H., Espy-Wilson, C., Saltzman, E., & Tiede, M. (2018). Hybrid convolutional neural networks for articulatory and acoustic information-based speech recognition. Speech Communication, 89, 103–112. https://doi.org/10.1016/j.specom.2017.03.003 Search in Google Scholar

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2015). Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment. Expert Systems with Applications, 42(1), 306-324. https://doi.org/10.1016/j.eswa.2014.08.004 Search in Google Scholar

Onsumran, C., Thammaboosadee, S., & Kiattisin, S. (2015). Gold price volatility prediction by text mining in economic indicators news (Doctoral dissertation, Mahidol University). https://doi.org/10.12720/jait.6.4.243-247 Search in Google Scholar

Parisi, A., Parisi, F., & Díaz, D. (2008). Forecasting gold price changes: Rolling and recursive neural network models. Journal of Multinational Financial Management, 18, 477–487. https://doi.org/10.1016/j.mulfin.2007.12.002 Search in Google Scholar

Sanderson, H. (2015). Gold rises amid expectations of ECB move on QE. The Financial Times. https://doi.org/10.1111/j.1540-6288.2010.00244.x Search in Google Scholar

Trück, S., & Liang, K. (2012). Modeling and forecasting volatility in the gold market.International Journal of Banking and Finance, 9, 48–80. https://doi.org/10.32890/ijbf2012.9.1.8448 Search in Google Scholar

Tully, E., & Lucey, B. M. (2007). A power GARCH examination of the gold market. Research in International Business and Finance, 21, 316–325. https://doi.org/10.1016/j.ribaf.2006.07.001 Search in Google Scholar

Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In AAAI Publications, Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Search in Google Scholar

Wu. B, Wang. L, Lv. Sh, Zeng Y.(2021). Effective crude oil price forecasting using new text-based and big-data-driven model, Elsevier, Volume 168, 108468. https://doi.org/10.1016/j.measurement.2020.108468 Search in Google Scholar

Yazdani-Chamzini, A., Yakhchali, S. H., Volungeviciene, D., & Zavadskas, E. K. (2012). Forecasting gold price changes by using an adaptive network fuzzy inference system. Journal of Business Economics and Management, 13, 994–1010. https://doi.org/10.3846/16111699.2012.683808 Search in Google Scholar

Ye, M., Zyren, J., & Shore, J. (2006). Forecasting short-run crude oil price using high-and low-inventory variables. Energy policy, 34(17), 2736-2743. https://doi.org/10.1016/j.enpol.2005.03.017 Search in Google Scholar

Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data-driven oil consumption forecasting with Google trends. International Journal of Forecasting, 35(1), 213-223. https://doi.org/10.1016/j.ijforecast.2017.11.005 Search in Google Scholar

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050 Search in Google Scholar

Zhu, C., Yin, J., & Li, Q. (2014). A stock decision support system based on DBNs. Journal of Computational Information System, 10, 883–893. Search in Google Scholar