INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Agardy T. (2000). Information needs for marine protected areas: scientific and societal. Bull. Mar. Sci. 66, 875–888. Search in Google Scholar

[2] Agardy T., Bridgewater P., Crosby M.P., Day J., Dayton P.K., Kenchington R., Laffoley D., McConney P., Murray P. A., Parks J.E. & Peau L. (2003). Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquatic Conserv: Mar. Freshw. Ecosyst. 13, 353–367. http://dx.doi.org/10.1002/aqc.58310.1002/aqc.583 Search in Google Scholar

[3] Andrulewicz E., Otręba Z., Węsławski J.M. & Kamińska K. (2012). Disturbances of physical properties of marines pace related to large — scale technical installations. Implications for ecosystem-based management in the Baltic Sea. Marine Management, in press Search in Google Scholar

[4] Baddeley R. & Turner R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software. 12, 1–42. Search in Google Scholar

[5] Bell JJ. & Okamura B. (2005). Low genetic diversity in a marine nature reserve: reevaluating diversity criteria in reserve design. Proc. Royal Soc. B, 272, 1067–1074. http://dx.doi.org/10.1098/rspb.2005.305110.1098/rspb.2005.3051 Search in Google Scholar

[6] Boero F. & Bonsdorff E. (2007). A conceptual framework for marine biodiversity and ecosystem functioning. Marine Ecology. 28, 134–145. http://dx.doi.org/10.1111/j.1439-0485.2007.00171.x10.1111/j.1439-0485.2007.00171.x Search in Google Scholar

[7] Boersma de P. & Parrish J.K. (1999). Limiting abuse: marine protected areas, a limited solution. Ecological Economics. 31, 287–304. http://dx.doi.org/10.1016/S0921-8009(99)00085-310.1016/S0921-8009(99)00085-3 Search in Google Scholar

[8] Bologna P.A.X. & Heck, K.L. (2002). Impact of Habitat Edges on Density and Secondary Production of Seagrass-associated Fauna. Estuaries. 25(5), 1033–1044. http://dx.doi.org/10.1007/BF0269135010.1007/BF02691350 Search in Google Scholar

[9] Bonsdorff E. (2006). Zoobenthos diversity gradients in the Baltic sea: Continuous post-glacial succession in a stressed ecosystem. Journal of Exp. Marine Biol. And Ecol. 330, 383–391. http://dx.doi.org/10.1016/j.jembe.2005.12.04110.1016/j.jembe.2005.12.041 Search in Google Scholar

[10] Bonsdorff E. & Pearson T. (1999). Variation in the sublittoral macrozoobenthos of the Baltic sea along environmental gradients: a functional group approach. Australian Journal of Ecology. 24, 312–326. http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x10.1046/j.1442-9993.1999.00986.x Search in Google Scholar

[11] Bostrom C. & Bonsdorff E. (1997). Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research. 37, 153–166. http://dx.doi.org/10.1016/S1385-1101(96)00007-X10.1016/S1385-1101(96)00007-X Search in Google Scholar

[12] Brown J.H. (1984). On the relationship between abundance and distribution of species. The American Naturalist. 124, 255–279. http://dx.doi.org/10.1086/28426710.1086/284267 Search in Google Scholar

[13] Dulvy N.K., Sadovy Y. & Reynolds J.D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries. 4, 25–64. http://dx.doi.org/10.1046/j.1467-2979.2003.00105.x10.1046/j.1467-2979.2003.00105.x Search in Google Scholar

[14] Dziubińska A. (2011). PhD dissertation, University of Gdansk, unpublished manuscript Search in Google Scholar

[15] Elmgren, R. & C. Hill. (1997). Ecosystem function at low biodiversity — the Baltic example. In: Marine Biodiversity. Patterns and Processes. Ormond, R.F.G., Gage, J.D. and Angel, M.V. (eds). Cambridge University Press, Cambridge, 319–336. http://dx.doi.org/10.1017/CBO9780511752360.01510.1017/CBO9780511752360.015 Search in Google Scholar

[16] Gic Grusza G., Urbański J., Warzocha J. & Węsławski J.M. (2009). Atlas of marine seabed habitats of Polish Marine Areas. IOPAN, Sopot, 180 pp. Search in Google Scholar

[17] Glockzin M. & Zettler M.L. (2008). Spatial macrozoobenthic distribution patterns in relation to major environmental factors — A case study from the Pomeranian Bay (southern Baltic Sea). Journal of Sea Research. 59, 144–161. http://dx.doi.org/10.1016/j.seares.2008.01.00210.1016/j.seares.2008.01.002 Search in Google Scholar

[18] Gray J.S. (2002). Species richness of marine soft sediments. Mar Ecol Prog Ser. 244, 285–297. http://dx.doi.org/10.3354/meps24428510.3354/meps244285 Search in Google Scholar

[19] Grzelak K. & Kuklinski P. (2010). Benthic assemblages associated with rocks in a brackish environment of the southernBaltic Sea. Journal of the Marine Biological Association of the United Kingdom. 90, 115–124. http://dx.doi.org/10.1017/S002531540999137810.1017/S0025315409991378 Search in Google Scholar

[20] Healey D. & Hovel K.A. (2004). Seagrass bed patchiness: effects on epifaunal communities in San Diego Bay, USA. Journal of Experimental Marine Biology and Ecology. 313, 155–174. http://dx.doi.org/10.1016/j.jembe.2004.08.00210.1016/j.jembe.2004.08.002 Search in Google Scholar

[21] ICES (2011). Report of the Workshop on the Science for area-based management: Coastal and Marine Spatial Planning in practice (WKCMSP). 1–4 November 2010, Lisbon, Portugal. ICES CM 2011/SSGHIE:01. 25 pp Search in Google Scholar

[22] Janas, U., Zarzycki, T. & Kozik, P. (2004). Palaemon elegans — a new component of the Gulf of Gdańsk macrofauna. Oceanologia. 46, 143–146. Search in Google Scholar

[23] Jazdzewski K. (1973). Ecology of gammarids in the Bay of Puck. Oikos, suppl. 15: 121–126. Search in Google Scholar

[24] Jeczmien W. & Szaniawska A. (2000). Quantitative studies on Gammarus Fabr. genus in Puck Bay (the Baltic Sea). Polskie Archiwum Hydrobiologii. 47(3–4), 561–568. Search in Google Scholar

[25] Laine A.O. (2003). Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuarine, Coastal and Shelf Science. 57, 87–97. http://dx.doi.org/10.1016/S0272-7714(02)00333-510.1016/S0272-7714(02)00333-5 Search in Google Scholar

[26] Leeuwen van A., De Roos A.M. & Persson L.(2008). How cod shapes its world. Journal of Sea Research. 60, 89–104. http://dx.doi.org/10.1016/j.seares.2008.02.00810.1016/j.seares.2008.02.008 Search in Google Scholar

[27] Levitan D.R. (1991). Influence of body size and population density on fertilization success and reproductive output in a free spawning invertebrate. Biological Bull.(Woods Hole). 181, 261–268. http://dx.doi.org/10.2307/154209710.2307/154209729304646 Search in Google Scholar

[28] Mokievsky V.O. (2009). Marine protected areas: theoretical background for design and operation. Russian Journal of Marine Biology. 35, 504–514. http://dx.doi.org/10.1134/S106307400906009110.1134/S1063074009060091 Search in Google Scholar

[29] Myers R.A., Barrowman N.J., Hutching J.A. & Rosenberg A.A. (1995). Population dynamics of exploited fish stocks at low population levels. Science. 52227, 1106–1108. http://dx.doi.org/10.1126/science.269.5227.110610.1126/science.269.5227.110617755535 Search in Google Scholar

[30] Norse E.A. & Crowder L.B. (2005). Marine Conservation Biology. Island Press; Washington, Covelo, London, 470 pp. Search in Google Scholar

[31] Osowiecki A. (1998). Macrozoobenthos distribution in the coastal zone of the Gulf of Gdansk — autumn 1994 and summer 1995. Oceanological Studies. 27, 123–136. Search in Google Scholar

[32] Petitgas, P. (1998). Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves. ICES Journal of Marine Science. 55, 443–453. http://dx.doi.org/10.1006/jmsc.1997.034510.1006/jmsc.1997.0345 Search in Google Scholar

[33] Pliński M. & Florczyk I. (1984). Changes in the phytobenthos resulting from the eutrophication of the Puck Bay. Limnologica (Berlin). 15, 325–327. Search in Google Scholar

[34] Powles H., Bradford M.J., Bradford R.G., Doubleday W.G., Innes S. & Levings C.D. (2000). Assessing and protecting endangered marine species. ICES Journal of Marine Science. 57, 669–676. http://dx.doi.org/10.1006/jmsc.2000.071110.1006/jmsc.2000.0711 Search in Google Scholar

[35] Robbins B.D. & Bell S.S. (1994). Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends in Ecology and Evolution. 9, 301–304. http://dx.doi.org/10.1016/0169-5347(94)90041-810.1016/0169-5347(94)90041-8 Search in Google Scholar

[36] Roberts D.A. & Poore A.G.B. (2005). Habitat configuration affects colonization of epifauna in a marine algal bed. Biological conservation. 127, 18–26. http://dx.doi.org/10.1016/j.biocon.2005.07.01010.1016/j.biocon.2005.07.010 Search in Google Scholar

[37] Skov H., Durinck J., Leopold M.F. & Tasker M.L. (2007). A quantitative method for evaluating the importance of marine areas for conservation of birds. Biological conservation. 136, 362–371. http://dx.doi.org/10.1016/j.biocon.2006.12.01610.1016/j.biocon.2006.12.016 Search in Google Scholar

[38] Smoła Z. (2012). MSc dissertation, University of Gdansk Search in Google Scholar

[39] Sumaila U.R. (2002). Marine protected area performance in a model of the fishery. Natural Resource Modelling. 15, 439–451. http://dx.doi.org/10.1111/j.1939-7445.2002.tb00097.x10.1111/j.1939-7445.2002.tb00097.x Search in Google Scholar

[40] Szymelfenig M., Kotwicki L. & Graca B. (2006). Benthic recolonization in post dredging pits in the Puck Bay (Southern Baltic). Estuarine Coastal and Shelf Science. 68, 489–498. http://dx.doi.org/10.1016/j.ecss.2006.02.01810.1016/j.ecss.2006.02.018 Search in Google Scholar

[41] Tzvetkova, N. L. (1975). Coastal gammarids of the northern and Far Eastern seas of the USSR and adjacent waters. Genera Gammarus, Marinogammarus, Anisogammarus, Mesogammarus (Amphipoda, Gammaridae). Nauka, Leningrad (in Russian). Search in Google Scholar

[42] Virnstein R.W. & Curran M.C. (1986). Colonisation of artificial seagrass versus time and distance from source. Marine Ecol. Progress Ser. 29, 279–288. http://dx.doi.org/10.3354/meps02927910.3354/meps029279 Search in Google Scholar

[43] Warzocha J. (1995). Classification and structure of of macrofaunal communities in the souhern Baltic. Arch. Fish. Mar. Res. 42, 225–237. Search in Google Scholar

[44] Weslawski J.M., Urbanski J., Kryla-Straszewska L., Andrulewicz E., Linkowski T., Kuzebski E., Meissner W, Otremba Z & Piwowarczyk J. (2010). The different uses of sea space in Polish Marine Areas: is conflict inevitable? Oceanologia. 52, 513–530. http://dx.doi.org/10.5697/oc.52-3.51310.5697/oc.52-3.513 Search in Google Scholar

[45] Weslawski J.M., Warzocha J., Wiktor J., Urbanski J., Radtke K., Kryla L., Tatarek A., Kotwicki L. & Piwowarczyk J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia. 51, 415–435. http://dx.doi.org/10.5697/oc.51-3.41510.5697/oc.51-3.415 Search in Google Scholar

[46] Wlodarska-Kowalczuk M., Weslawski J.M., Warzocha J. & Janas U. (2010). Habitat loss and possible effects on local species richness in a speciespoor system — a case study of southern Baltic. Biodivers Conserv. 19, 3991–4002. http://dx.doi.org/10.1007/s10531-010-9942-610.1007/s10531-010-9942-6 Search in Google Scholar

[47] Worm B., Lotze H.K. & Sommer U. (2001). Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia. 128, 281–293. http://dx.doi.org/10.1007/s00442010064810.1007/s00442010064828547477 Search in Google Scholar

[48] Zschokke S., Dolt C., Rusterholz H., Oggier C., Braschler B., Thommen G.H., Ludin E., Erhardt A. & Baur B. (2000). Short term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia. 125, 559–572. http://dx.doi.org/10.1007/s00442000048310.1007/s00442000048328547226 Search in Google Scholar

eISSN:
1897-3191
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, other, Geosciences, Life Sciences