Accesso libero

The hydrochemistry of peatland lakes as a result of the morphological characteristics of their basins

  
12 apr 2013
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

[1] Banaś, K. (1999). Drainage of the organogenic habitats and functioning of lake ecosystems. In A. Barcikowski, M. Boiński & A. Nienartowicz (Eds.), Versatile role of forest, protection of nature, economy, education (pp. 191–199). Toruń: O. W. Turpress. (in Polish) Search in Google Scholar

[2] Banaś, K. (2001). Impact of humic substances on underwater vegetation habitats. Gdańsk: Uniwersytet Gdański, Wydz. BGiO (dissertation). (in Polish) Search in Google Scholar

[3] Banaś, K. (2004). Tendencies of changes of the physical and chemical characteristics of the water in Pomerania humin lakes, In A.T. Jankowski & M. Rzętała (Eds.), Lakes and artificial water reservoirs — functioning revitalization and protection (pp. 7–17). Katowice: University of Silesia — Faculty of Earth Science, Polish Limnological Society, Polish Geographical Society — Branch Katowice. (in Polish with Engl. summ.) Search in Google Scholar

[4] Banaś, K. (2010). Morphology of peatland lakes. Limnological Review 10 (1), 3–14.7. 10.2478/v10194-011-0001-9 Search in Google Scholar

[5] Banaś, K. & Gos K. (2004). Effect of peat-bog reclamtion on the physico-chemical characteristics of the ground water in peat. Polish Journal of Ecology, 52(1): 69–74. Search in Google Scholar

[6] Banaś, K. & Gos K. (2008). Features and diversity of pomeranian peatland lakes. In E. Bajkiewicz-Grabowska & D. Borowiak (Eds.), Anthropogenic and natural transformations of lakes (pp. 13–17). Gdańsk: Wyd. KLUG-PTLim. Search in Google Scholar

[7] Banaś, K., Gos K. & Szmeja J. (2011). Factors controlling vegetation structure in peatland lakes. Aquatic Botany (in press); doi:10.1016/j.aquabot.2011.09.010 10.1016/j.aquabot.2011.09.010 Search in Google Scholar

[8] Beck, K.C., Reuter J.H. & Purdue E.M. (1974). Organic and inorganic chemistry of some coastal plain rivers of the southeastern United States. Geochimica et Cosmochimica Acta, 38, 341–364. http://dx.doi.org/10.1016/0016-7037(74)90130-610.1016/0016-7037(74)90130-6 Search in Google Scholar

[9] Bociąg, K. (1998). Submerged vegetation in the process of lake anthropogenic euhumication. In W. Lange & D. Borowiak (Eds.), Degradation hazards and lakes’ protection (pp. 151–159). Gdańsk: Wyd. DJ. (in Polish) Search in Google Scholar

[10] Bociąg, K. (2000). Transformation of submerged vegetation in the process of humification of lakes. Gdańsk: Uniwersytet Gdański, Wydz. BGiO (dissertation). (in Polish). Search in Google Scholar

[11] Bociąg, K. & Szmeja J. (2001). Degeneration of the vegetation of softwater lakes under the influence of humic substances. Polish Journal of Ecology, 49(4), 319–326. Search in Google Scholar

[12] Buffle, J. (1984). Natural organic matter and metal-organic interactions in aquatic systems. In H. Siegel (Eds.) Metal Ions in Biological Systems (pp. 165–221). New York: Marcel Dekker. Search in Google Scholar

[13] Driscoll, C.T., Baker J.P., Bisogni J.J. & Schofield C.L. (1980). Effects of aluminium speciation on fish in dilute acidified waters. Nature, 284: 161–164. http://dx.doi.org/10.1038/284161a010.1038/284161a0 Search in Google Scholar

[14] Driscoll, C.T., Fuller R.D. & Simone D.M. (1988). Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual., 17, 101–107. http://dx.doi.org/10.2134/jeq1988.00472425001700010015x10.2134/jeq1988.00472425001700010015x Search in Google Scholar

[15] Effler, S.W., Schafran G.C. and Driscoll C.T. (1985). Partitioning light atteuation in an acidic lake. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1707–1711. http://dx.doi.org/10.1139/f85-21410.1139/f85-214 Search in Google Scholar

[16] Eaton, A.D., Clesceri L.S., Rice E.W. & Greenberg A.E. (2005). Standard methods for the examination of water and wastewater (21th ed.). Washington: American Public Health Association, American Water Works Association and Water Environment Federation. Search in Google Scholar

[17] Engstrom, D.R. (1987). Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44, 1306–1314. http://dx.doi.org/10.1139/f87-15410.1139/f87-154 Search in Google Scholar

[18] Gorham, E., Underwood J.K., Martin F.B. & Ogden J.G. (1986). Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature, 324, 451–453. http://dx.doi.org/10.1038/324451a010.1038/324451a0 Search in Google Scholar

[19] Górniak, A. (1996), Humic substances and their role in the functioning of freshwater ecosystems, Warszawa: Diss. Univ. Varsov. (in Polish) Search in Google Scholar

[20] Gos, K., Bociąg K. and Banaś K. (1998). Submerged vegetation in the acid lakes of Pomerania. In J. Banaszak & K. Tobolski (Eds.), Tuchola Forests National Park (pp. 261–277), Bydgoszcz: Wyd. WSP. (in Polish) Search in Google Scholar

[21] Guildford, S.J., Healey F.P. & Hecky R.E. (1987). Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, northern Manitoba. Canadian Journal of Fisheries and Aquatic Sciences, 44, 1408–1417. http://dx.doi.org/10.1139/f87-16910.1139/f87-169 Search in Google Scholar

[22] Hays, W.L. (1988). Statistics (3rd ed.). New York: Holt, Rinehart & Winston. Search in Google Scholar

[23] Hutchinson, G.E. (1975). A Treatise on Limnology. III. Limnological Botany. New York, Wiley. Search in Google Scholar

[24] Ilnicki, P. (2002). Peatlands and peat. Poznań: Wyd. Akademii Rolniczej w Poznaniu. (in Polish) Search in Google Scholar

[25] Jackson, T.A. & Hecky R.E. (1980). Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Canadian Journal of Fisheries and Aquatic Sciences, 37, 2300–2317. http://dx.doi.org/10.1139/f80-27710.1139/f80-277 Search in Google Scholar

[26] Kinniburgh, D.G., Milne C.J., Benedetti M.F., Pinheiro J.P., Filius J., Koopal L.K. & Van Riemsdijk W.H. (1996). Metal ion binding by humic acid: application of the NICADonnan Model. Environ. Sci. Technol. 30(5), 1687–1698. http://dx.doi.org/10.1021/es950695h10.1021/es950695h Search in Google Scholar

[27] Lange, W. (1993). Physicolimnological methods of study, Gdańsk: Wyd. UG. (in Polish) Search in Google Scholar

[28] Lillie, R.A. & Mason J.W. (1983). Limnological characteristics of Wisconsin lakes. Madison: Wis. Dept. of Natural Resources Tech. Bull. Search in Google Scholar

[29] McKnight, D., Thurman E.M., Wershaw R. & Hemond H. (1985). Biogeochemistry of aquatic humic substances in Thoreau’s Bog. Concord, Massachusetts, Ecology, 66, 1339–1352. http://dx.doi.org/10.2307/193918710.2307/1939187 Search in Google Scholar

[30] Milliken, G.A. & Johnson D.E. (1984). Analysis of messy data. (Vol. I). Designed experiments. New York: Van Nostrand Reinhold Co. Search in Google Scholar

[31] Overton, W., Kanciruk P., Hook L., Eilers J., Landers D., Brakke D., Blick D. & Linthurst R. (1986). Lakes sampled and descriptive statistics for physical and chemical variables. Characteristics of Lakes in the Eastern United States (Vol. 2). Washington, USA: Environ. Prot. Agency. Search in Google Scholar

[32] Pienitz, R. & Smol J.P. (1993). Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270, 391–404. http://dx.doi.org/10.1007/BF0002803710.1007/BF00028037 Search in Google Scholar

[33] Rogalla, J.A. (1986). Empirical acidification modeling for lakes in the upper Great Lakes region. M.S. thesis, Minneapolis: Univ. of Minn. Search in Google Scholar

[34] Sholkovitz, E.R. & Copland D. (1982). The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta, 46, 393–410. http://dx.doi.org/10.1016/0016-7037(82)90231-910.1016/0016-7037(82)90231-9 Search in Google Scholar

[35] Spence, D.H.N. (1982). The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12, 37–125. http://dx.doi.org/10.1016/S0065-2504(08)60077-X10.1016/S0065-2504(08)60077-X Search in Google Scholar

[36] Sposito, G. (1986). Sorption of trace metals by humic materials in soils and natural waters. Rev. Environ. Control, 16(2), 193–229. http://dx.doi.org/10.1080/1064338860938174510.1080/10643388609381745 Search in Google Scholar

[37] Stewart, A.J. & Wetzel R.G. (1982). Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwater Biology, 12, 369–380. http://dx.doi.org/10.1111/j.1365-2427.1982.tb00630.x10.1111/j.1365-2427.1982.tb00630.x Search in Google Scholar

[38] Szmeja, J. (1992). Structure, spatial organization and demography of isoetid populations, Gdańsk, Zesz. Nauk. UG, Rozprawy i Monografie 175, 1–137. (in Polish) Search in Google Scholar

[39] Szmeja, J. (2000). Tendences of changes in the flora and vegetation structure o pomeranian lakes under the influence of humic substances. In B. Jackowiak (Eds.) Mechanisms of Anthropogenic changes of the plant cover (pp. 85–97), Poznań: Bogucki Wyd. Nauk. Search in Google Scholar

[40] Szmeja, J., Bazydło E. & Uruska A. (2000). Role of humic substances in the determination of Sphagnum denticulatum Brid. and Myriophyllum spicatum L. habitat conditions. Polish Journal of Ecology, 49(2), 101–113. Search in Google Scholar

[41] Szpakowska, B. & Życzyńska-Błoniak I. (1994). The role of biogeochemical barriers in water migration of humic substances. Pol. J. Envir. Studies 3, 35–41. Search in Google Scholar

[42] Ter Braak, C.J.F. & Smilauer P. (1998). CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, New York: Microcomputer Power. Search in Google Scholar

[43] Ter Braak, C.J.F. & Smilauer P. (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). NY, Ithaca USA: Microcomputer Power. Search in Google Scholar

[44] Tobolski, K. (2003). Peatland on example of the Świecka ground. Świecie: Towarzystwo Przyjaciół Dolnej Wisły. (in Polish) Search in Google Scholar

[45] Urban, N.R., Eisenreich S.J. & Gorham E. (1987). Proton Cycling in bogs: Geographic variation in northeastern North America. In T.C. Hutchinson & K.M. Meema (Eds.) The Effects of Air Pollutants on Forests (pp. 577–598), Springer-Verlag, New York: Wetlands and Agricultural Ecosystems 10.1007/978-3-642-70874-9_41 Search in Google Scholar

[46] Urban, N.R., Bayley S.E. & Eisenreich S.J. (1989). Export of dissolved organic carbon and acidity from peatlands. Water Resources Research, 25(7), 1619–1628. http://dx.doi.org/10.1029/WR025i007p0161910.1029/WR025i007p01619 Search in Google Scholar

[47] Wetzel, R.G. (2001). Limnology. Lake and river ecosystems, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press. Search in Google Scholar

[48] Wright, R. (1983). Predicting acidification of North American lakes, Acid Rain Res. Ser. Rep. 4, Oslo: Norw. Inst. Water Res. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chimica, Chimica, altro, Geoscienze, Geoscienze, altro, Scienze biologiche, Scienze della vita, altro