Accesso libero

U-Pb zircon age of the youngest magmatic activity in the High Tatra granites (Central Western Carpathians)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Broska I and Uher P, 2001. Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologia Carpathica 52: 79–90. Search in Google Scholar

[2] Burchart J, 1970. Skały krystaliczne wyspy Goryczkowej w Tatrach (Rocks of the Goryczkowa “crystalline island” in the Tatra Mountains.). Studia Geologica Polonica 32: 7–183 (in Polish). Search in Google Scholar

[3] Burda J, 2006. U-Pb zircon age of partial melting in metapelites from the Western Tatra Mts. Mineralogia Polonica — Special Papers, 29: 111–114. Search in Google Scholar

[4] Burda J, 2010. Internal structures and dating of complex zircons from High Tatra massif granodiorites, Poland. 10 thInternational conference -Methods of absolute chronology- 22–25 April Gliwice, Poland. Abstracts & Programme: 79. Search in Google Scholar

[5] Burda J and Klötzli U, 2007. LA-MC-ICP-MS U-Pb zircon geochronology of the Goryczkowa type granite — Tatra Mts., Poland. Mineralogia Polonica — Special Papers 31: 89–92. Search in Google Scholar

[6] Burda J and Gawęda A, 2009. Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110: 373–385. http://dx.doi.org/10.1016/j.lithos.2009.01.01010.1016/j.lithos.2009.01.010Search in Google Scholar

[7] Burda J and Klötzli U, 2011. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating. Mineralogy and Petrology 102: 99–115. http://dx.doi.org/10.1007/s00710-011-0176-410.1007/s00710-011-0176-4481109927069306Search in Google Scholar

[8] Burda J, Gawęda A and Klötzli U, 2011. Magma hybridization in the Western Tatra Mountains granitoid intrusion (S-Poland, Western Carpathians). Mineralogy and Petrology 103: 19–36. http://dx.doi.org/10.1007/s00710-011-0150-110.1007/s00710-011-0150-1481110027069307Search in Google Scholar

[9] Deditius A, 2004. Charakterystyka i wiek izotopowy blastezy muskowi-tów ze stref mylonitycznych w skałach krystalicznych Tatr Zachodnich (Petrology and izotopic age of the muscovite blasthesis from the mylonitic zones in the crystalline rocks of the Western Tatra Mountains). Geologia 16. Wydawnictwo Uniwersytetu Ślą-skiego (in Polish, English abstract). Search in Google Scholar

[10] Gawęda A, 2008. Apatite-rich enclave in the High Tatra granite, Western Carpathians: petrological and geochronological study. Geologia Carpathica 59(4): 295–306. Search in Google Scholar

[11] Gawęda A, 2009. Enclaves in the High Tatra Granite. University of Silesia publishing House. Monographic series 2637, Katowice: 180 pages (in Polish, English abstract). Search in Google Scholar

[12] Gawęda A, Doniecki T, Burda J and Kohut M, 2005. The petrogenesis of quartz-diorites from the Tatra Mountains (Central Western Carpathians): an example of magma hybridisation. Neues Jahrbuch für Mineralogie-Abhandlungen 1: 95–109. http://dx.doi.org/10.1127/0077-7757/2005/0181-000510.1127/0077-7757/2005/0181-0005Search in Google Scholar

[13] Gawęda A and Sikorska M, 2009. Alkali feldspar megacrysts from the High Tatra granite — indicators of magma mixing/mingling processes. Mineralogia — Special Papers 35: 82. Search in Google Scholar

[14] Gawęda A and Szopa K, 2011. The origin of magmatic layering in the High Tatra granite, Central Western Carpathians — implications for the formation of granitoid plutons. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103: 129–144. http://dx.doi.org/10.1017/S175569101201014610.1017/S1755691012010146Search in Google Scholar

[15] Gawęda A and Włodyka R, 2013. The origin of post-magmatic Ca-Al minerals in granite-diorite mingling zones: The Tatra granitoid intrusion, Western Carpathians. Neues Jahrbuch für Mineralogie-Abhandlungen (in print). 10.1127/0077-7757/2012/0228Search in Google Scholar

[16] Grabowski J and Gawęda A, 1999. Preliminary paleomagnetic study of the High Tatra granites, Central Western Carpathians, Poland. Geological Quaterly 43(3): 263–276. Search in Google Scholar

[17] Hildreth W, 2004. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. Journal of Volcanology and Geothermal Research 136(3–4): 169–198, DOI 10.1016/j.jvolgeores.2004.05.019. http://dx.doi.org/10.1016/j.jvolgeores.2004.05.01910.1016/j.jvolgeores.2004.05.019Search in Google Scholar

[18] Janak M, 1994. Variscan uplift of the crystalline basement, Tatra Mts., Central Western Carpathians: evidence from 40Ar/39Ar laser probe dating of biotite and P-T-t paths. Geologica Carpathica 45(5): 293–300. Search in Google Scholar

[19] Klötzli U and Parrish RR, 1996. Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineralogy and Petrology 58: 197–214. http://dx.doi.org/10.1007/BF0117209610.1007/BF01172096Search in Google Scholar

[20] Kohút M and Janak M, 1994. Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geologica Carpathica 45(5): 301–311. Search in Google Scholar

[21] Kohút M and Nabelek PI, 2008. Geochemical and isotopic (Sr, Nd and O) constraints on sources of Variscan granites in the Western Carpathians — implications for crustal structure and tectonics. Journal of Geosciences 53: 307–322, DOI 10.3190/jgeosci.033. 10.3190/jgeosci.033Search in Google Scholar

[22] Kohút M and Sherlock S, 2003. Laser microprobe 40Ar-39Ar analysis of pseudotachylyte and host rocks from the Tatra Mountains, Slovakia: Evidence for Late Paleogene seismic/tectonic activity. Terra Nova 15(6): 417–424, DOI 10.1046/j.1365-3121.2003.00514.x. http://dx.doi.org/10.1046/j.1365-3121.2003.00514.x10.1046/j.1365-3121.2003.00514.xSearch in Google Scholar

[23] Leichmann, J, Jacher-Sliwczynska K and Broska I, 2009. Element mobility and fluid path ways during feldspar alteration: textural evidence from cathodoluminescence and electron microprobe study of an example from tonalites (High Tatra, Poland-Slowakia). Neues Jahrbuch für Mineralogie-Abhandlungen 186(1): 1–10. http://dx.doi.org/10.1127/0077-7757/2009/012410.1127/0077-7757/2009/0124Search in Google Scholar

[24] Ludwig KR, 2003. Isoplot/Ex version 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication 4: 1–74. Search in Google Scholar

[25] Morozewicz K, 1914. Über die Tatragranite (About the Tatra granite). Neues Jahrbuch für Geologie und Palaontologie-Abhandlungen 39: 289–345. Search in Google Scholar

[26] Poller U, Janak M, Kohút M and Todt W, 2000. Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). International Journal of Earth Sciences 89(2): 336–349, DOI 10.1007/s005310000082. http://dx.doi.org/10.1007/s00531000008210.1007/s005310000082Search in Google Scholar

[27] Poller U and Todt W, 2000. U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science 91: 235–243. http://dx.doi.org/10.1017/S026359330000740910.1017/S0263593300007409Search in Google Scholar

[28] Poller U, Todt W, Kohút M and Janak M, 2001. Nd, Sr, Pb isotope study of the Western Carpathians: implications for the Paleozoic evolution. Schweizerische Mineralogische und Petrographische Mitteilungen 81: 159–174. Search in Google Scholar

[29] Pupin JP, 1980. Zircon and granite petrology. Contribution to Mineralogy and Petrology 73: 207–220. http://dx.doi.org/10.1007/BF0038144110.1007/BF00381441Search in Google Scholar

[30] Sláma J, Kosler J, Schaltegger U, Tubrett M and Gutjahr M, 2006. New natural zircon standard for laser ablation ICP-MS U-Pb geochronology. Abstract WP05. Winter Conference on Plasma Spectrochemistry, Tucson: 187–188. Search in Google Scholar

[31] Stacey JS and Kramers JD, 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters 26(2): 207–221, DOI 10.1016/0012-821X(75)90088-6. http://dx.doi.org/10.1016/0012-821X(75)90088-610.1016/0012-821X(75)90088-6Search in Google Scholar

[32] Sun SS and McDonough WF, 1989. Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins. Geological Society London Special Publications 42: 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.1910.1144/GSL.SP.1989.042.01.19Search in Google Scholar

[33] Sylvester PJ and Ghaderi M, 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology 141(1-2): 49–65, DOI 10.1016/S0009-2541(97)00057-0. http://dx.doi.org/10.1016/S0009-2541(97)00057-010.1016/S0009-2541(97)00057-0Search in Google Scholar

[34] Watson TM and Harrison EB, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64(2): 295–304, DOI 10.1016/0012-821X(83)90211-X. http://dx.doi.org/10.1016/0012-821X(83)90211-X10.1016/0012-821X(83)90211-XSearch in Google Scholar

[35] Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W, 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19: 1–23. http://dx.doi.org/10.1111/j.1751-908X.1995.tb00147.x10.1111/j.1751-908X.1995.tb00147.xSearch in Google Scholar

eISSN:
1897-1695
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Geosciences, other