INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Aitken MJ, 1985. Thermoluminescence Dating. London, Academic Press: 359pp. Search in Google Scholar

[2] Auclair M, Lamothe M and Hout S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurement 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0. http://dx.doi.org/10.1016/S1350-4487(03)00018-010.1016/S1350-4487(03)00018-0Search in Google Scholar

[3] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565. DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.00710.1016/j.radmeas.2009.02.007Search in Google Scholar

[4] Buylaert JP, Thiel C, Murray AS, Vandenberghe DAG, Yi S, Lu H, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38(4): 432–440, DOI 10.2478/s13386-011-0047-0. 10.2478/s13386-011-0047-0Search in Google Scholar

[5] Frechen M, Horváth E and Gábris G, 1997. Geochronology of Middle to Upper Pleistocene Loess Sections in Hungary. Quaternary Research 48(3): 291–312, DOI 10.1006/qres.1997.1929. http://dx.doi.org/10.1006/qres.1997.192910.1006/qres.1997.1929Search in Google Scholar

[6] Hayatsu K and Arai F, 1981. Tephrochronological study on the Shinanogawa tephra formations at the middle course of the Sinano River, central Japan. Journal of Geography (Chigakuzasshi) 91: 88–103 (in Japanese with English abstract). Search in Google Scholar

[7] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[8] Kaizuka S, Koike K, Endo K, Yamazaki H and Suzuki T, 2000. Regional Geomorphology of the Japanese Islands. Vol. 4: Geomorphology of Kanto and Izu-Ogasawara. University of Tokyo Press: 349pp. (in Japanese). Search in Google Scholar

[9] Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021. http://dx.doi.org/10.1016/j.radmeas.2008.01.02110.1016/j.radmeas.2008.01.021Search in Google Scholar

[10] Lamothe M and Auclair M, 1999. A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals. Earth and Planetary Science Letters 171(3): 319–323, DOI 10.1016/S0012-821X(99)00180-6. http://dx.doi.org/10.1016/S0012-821X(99)00180-610.1016/S0012-821X(99)00180-6Search in Google Scholar

[11] Lamothe M, Auclair M, Hamzaoui C and Huot, S, 2003. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements 37(4–5): 493–498, DOI 10.1016/S1350-4487(03)00016-7. http://dx.doi.org/10.1016/S1350-4487(03)00016-710.1016/S1350-4487(03)00016-7Search in Google Scholar

[12] Machida H and Arai F, 2003. Atlas of Tephra in and around Japan. University of Tokyo Press: 337pp. (in Japanese). Search in Google Scholar

[13] Miyairi Y, Yoshida K, Miyazaki Y, Matsuzaki H and Kaneoka I, 2004. Improved 14C dating of tephra layer (AT tephra, Japan) using AMS on selected organic fractions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224: 555–559, DOI 10.1016/j.nimb.2004.04.103. http://dx.doi.org/10.1016/j.nimb.2004.04.10310.1016/j.nimb.2004.04.103Search in Google Scholar

[14] Morthekai P, Jain M, Murray AS, Thomsen KJ and Bøtter-Jensen L, 2008. Fading characteristics of martian analogue materials and the applicability of a correction procedure. Radiation Measurements 43(2–6): 672–678, DOI 10.1016/j.radmeas.2008.02.019. http://dx.doi.org/10.1016/j.radmeas.2008.02.01910.1016/j.radmeas.2008.02.019Search in Google Scholar

[15] Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S1350-4487(03)00053-210.1016/S1350-4487(03)00053-2Search in Google Scholar

[16] Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The Effect of Preheating on the IRSL Signal from Feldspar. Radiation Measurements 44(5–6): 554–559, DOI 10.1016/j.radmeas.2009.02.004. http://dx.doi.org/10.1016/j.radmeas.2009.02.00410.1016/j.radmeas.2009.02.004Search in Google Scholar

[17] Novothny Á, Horváth E and Frechen M, 2002. The loess profile of Albertirsa, Hungary — Improvements in loess stratigraphy by luminescence dating. Quaternary International 95–96: 155–163, DOI 10.1016/S1040-6182(02)00036-8. http://dx.doi.org/10.1016/S1040-6182(02)00036-810.1016/S1040-6182(02)00036-8Search in Google Scholar

[18] Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-210.1016/1350-4487(94)90111-2Search in Google Scholar

[19] Suzuki T, 1995. Origin of so-called volcanic ash soil: thickness distribution in and around central Japan. Bulletin of the Volcanological Society of Japan 40: 167–176 (in Japanese with English abstract). Search in Google Scholar

[20] Suzuki T, 2001. Iizuna-Kamitaru tephra group erupted from the Iizuna volcano of Myoko volcano group in the transition from isotope stage 6 to 5, and its significance for the chronological study of central Japan. Quaternary Research (Daiyonkikenkyu) 40: 29–41 (in Japanese with English abstract). http://dx.doi.org/10.4116/jaqua.40.2910.4116/jaqua.40.29Search in Google Scholar

[21] Suzuki T, Fujiwara T and Danhara T, 1998. Fission track ages of eleven Quaternary tephras in north Kanto and south Tohoku regions, central Japan. Quaternary Research (Daiyonkikenkyu) 37: 95–106 (in Japanese with English abstract). http://dx.doi.org/10.4116/jaqua.37.9510.4116/jaqua.37.95Search in Google Scholar

[22] Thiel C, Buylaert JP, Murray AS, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) — Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI: 10.1016/j.quaint.2010.05.018. http://dx.doi.org/10.1016/j.quaint.2010.05.01810.1016/j.quaint.2010.05.018Search in Google Scholar

[23] Thomsen KJ, Bøtter-Jensen L, Denby PM, Moska P and Murray AS, 2006. Developments in luminescence measurement techniques. Radiation Measurements 41(7–8): 768–773, DOI 10.1016/j.radmeas.2006.06.010. http://dx.doi.org/10.1016/j.radmeas.2006.06.01010.1016/j.radmeas.2006.06.010Search in Google Scholar

[24] Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.00210.1016/j.radmeas.2008.06.002Search in Google Scholar

[25] Tsukamoto S, Murray A, Huot S, Watanuki T, Denby PM and Bøtter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190–197, DOI 10.1016/j.radmeas.2006.07.008. http://dx.doi.org/10.1016/j.radmeas.2006.07.00810.1016/j.radmeas.2006.07.008Search in Google Scholar

[26] Watanuki T, Murray AS and Tsukamoto S, 2005. Quartz and poly-mineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters 240(3–4): 774–789, DOI 10.1016/j.epsl.2005.09.027. http://dx.doi.org/10.1016/j.epsl.2005.09.02710.1016/j.epsl.2005.09.027Search in Google Scholar

[27] Wintle AG, 1973. Anomalous Fading of Thermoluminescence in Minerals. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

eISSN:
1897-1695
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Geosciences, other