This work is licensed under the Creative Commons Attribution 4.0 International License.
Barkia I., Saari N., Manning S. R. Microalgae for high-value products towards human health and nutrition. Marine Drugs 2019:17(5):1–29. https://doi.org/10.3390/md17050304Search in Google Scholar
Merlo A., Conti F. Bioactive Derivatives from Algae: Properties and Applications in Pharmaceuticals. Environ. Clim. Technol. 2023:27(1):438–449. https://doi.org/10.2478/rtuect-2023-0032Search in Google Scholar
Fernández F. G. A., Reis A., Wijffels R. H., Barbosa M., Verdelho V., Llamas B. The role of microalgae in the bioeconomy. N. Biotechnol. 2021:61:99–107. https://doi.org/10.1016/j.nbt.2020.11.011Search in Google Scholar
Rajesh Banu J., Kavitha Preethi S., Gunasekaran M., Kumar G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour. Technol. 2019:302:122822. https://doi.org/10.1016/j.biortech.2020.122822Search in Google Scholar
Ahmad I., Abdullah N., Koji I., Yuzir A., Eva Muhammad S. Evolution of Photobioreactors: A Review based on Microalgal Perspective. IOP Conf. Ser. Mater. Sci. Eng. 2021:1142(1):012004. https://doi.org/10.1088/1757-899X/1142/1/012004Search in Google Scholar
Hu J. Y., Sato T. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Convers. Manag. 2017:133:558–565. https://doi.org/10.1016/j.enconman.2016.11.008Search in Google Scholar
Lu H. et al. Exploration of flashing light interaction effect on improving biomass, protein, and pigments production in photosynthetic bacteria wastewater treatment. J. Clean. Prod. 2021:348:131304. https://doi.org/10.1016/j.jclepro.2022.131304Search in Google Scholar
Singh S. P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015:50:431–444. https://doi.org/10.1016/j.rser.2015.05.024Search in Google Scholar
Abou-Shanab R. A. I., Ji M. K., Kim H. C., Paeng K. J., Jeon B. H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manage. 2013:115:257–264. https://doi.org/10.1016/j.jenvman.2012.11.022Search in Google Scholar
Dahlin L. R. et al. Down-selection and outdoor evaluation of novel, halotolerant algal strains for winter cultivation. Front. Plant Sci. 2018:9:1–10. https://doi.org/10.3389/fpls.2018.01513Search in Google Scholar
Ievina B., Romagnoli F. The potential of Chlorella species as a feedstock for bioenergy production: A review. Environ. Clim. Technol. 2020:24(2):203–220. https://doi.org/10.2478/rtuect-2020-0067Search in Google Scholar
Fasaei F., Bitter J. H., Slegers P. M., van Boxtel A. J. B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research 2018:31:347–362. https://doi.org/10.1016/j.algal.2017.11.038Search in Google Scholar
Zhao Z., Mertens M., Li Y., Muylaert K., Vankelecom I. F. J. A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae. Bioresour. Technol. 2020:300:122688. https://doi.org/10.1016/j.biortech.2019.122688Search in Google Scholar
Li K. et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019:291:121934. https://doi.org/10.1016/j.biortech.2019.121934Search in Google Scholar
Calderón C., Geelen J., Jossaert J.-M., Decorte M. Bioenergy Europe Statistical Report on Biogas. 2022. [Online]. [Accessed 15.08.2024]. Available: https://www.europeanbiogas.eu/wp-content/uploads/2022/07/SR22_Biogas_Fullversion.pdfSearch in Google Scholar
Romagnoli F., Ievina B., Perera W. A. A. R. P., Ferrari D. Novel stacked modular open raceway ponds for microalgae biomass cultivation in biogas plants: Preliminary design and modelling. Environ. Clim. Technol. 2020:24(2):1–19. https://doi.org/10.2478/rtuect-2020-0050Search in Google Scholar
Romagnoli F., Thedy A., Ievina B., Feofilovs M. Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project. Environ. Clim. Technol. 2023:27(1):117–136. https://doi.org/10.2478/rtuect-2023-0010Search in Google Scholar
Romagnoli F. et al. Microalgae cultivation in a biogas plant: Environmental and economic assessment through a life cycle approach. Biomass and Bioenergy 2024:182:107116. https://doi.org/10.1016/j.biombioe.2024.107116Search in Google Scholar
Musie W., Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023:9(8):e18685. https://doi.org/10.1016/j.heliyon.2023.e18685Search in Google Scholar
Borowitzka M. A. Commercial-Scale Production of Microalgae for Bioproducts. In Blue Biotechnology: Production and use of marine molecules, La Barre S., Bates S. (Eds.), Vol. 1. Weinheim: Wiley-VCH, 2018:33–85. https://doi.org/10.1002/9783527801718.ch2Search in Google Scholar
Cheregi O., Ekendahl S., Engelbrektsson J., Strömberg N., Godhe A., Spetea C. Microalgae biotechnology in Nordic countries – the potential of local strains. Physiol. Plant. 2019:166(1):438–450. https://doi.org/10.1111/ppl.12951Search in Google Scholar
Allen M. M. Simple Conditions for Growth of Unicellular Blue‐Green Algae on Plates. J. Phycol. 1968:4(1):1–4. https://doi.org/10.1111/j.1529-8817.1968.tb04667.xSearch in Google Scholar
Ievina B., Romagnoli F. Microalga Chlorella vulgaris 211/11j as a promising strain for low temperature climate. J. Appl. Phycol. 2024:36:1117–1124. https://doi.org/10.1007/s10811-024-03192-3Search in Google Scholar
LVĢMC. Laikastākļu apskati, Gads 2021. (LVĜMC. Weather reviews, Year 2021). 2021. [Online]. [Accessed 15.09.2024]. Available: https://klimats.meteo.lv/operativais_klimats/laikapstaklu_apskati/arhivs/2021/gads/ (In Latvian).Search in Google Scholar
Lizzul A. M., Lekuona-Amundarain A., Purton S., Campos L. C. Characterization of chlorella sorokiniana, UTEX 1230. Biology (Basel) 2018:7(2):1–12. https://doi.org/10.3390/biology7020025Search in Google Scholar
Kobayashi N. et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 2013:150:377–386. https://doi.org/10.1016/j.biortech.2013.10.032Search in Google Scholar
Psachoulia P., Chatzidoukas C., Samaras P. Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water (Switzerland) 2024:16(3):485. https://doi.org/10.3390/w16030485Search in Google Scholar
Raven J. A., Geider R. J. Temperature and algal growth. New Phytologyst 1988:110(4):441–461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.xSearch in Google Scholar
Franco M. C., Buffing M. F., Janssen M., Lobato C. V., Wijffels R. H. Performance of Chlorella sorokiniana under simulated extreme winter conditions. J. Appl. Phycol. 2012:24(4):693–699. https://doi.org/10.1007/s10811-011-9687-ySearch in Google Scholar
Vonshak A., Novoplansky N. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J. Phycol. 2008:44(4):1071–1079. https://doi.org/10.1111/j.1529-8817.2008.00546.xSearch in Google Scholar
L. Ministru kabinets. Ministru kabineta noteikumi Nr.34. Noteikumi par piesārņojošo vielu emisiju ūdenī, Rīgā 2002.gada 22.janvārī. (Republic of Latvia Cabinet Regulation No. 34, Regulations Regarding Discharge of Polluting Substances into Water Adopted 22 January 2002). 2002. In Latvian.Search in Google Scholar
Almomani F. A., Örmeci B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016:95:280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038Search in Google Scholar
Lee S. A., Lee N., Oh H. M., Ahn C. Y. Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. J. Microbiol. Biotechnol. 2019:29(9):1434–1443. https://doi.org/10.4014/jmb.1905.05034Search in Google Scholar
Wang H. et al. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. Bioresour. Technol. 2023:370:128483. https://doi.org/10.1016/j.biortech.2022.128483Search in Google Scholar
Ievina B., Mantovani M., Marazzi F., Mezzanotte V., Romagnoli F. Application of activated carbon treated agricultural digestate for microalgae cultivation. Eur. Biomass Conf. Exhib. Proc. 2021:124–131.Search in Google Scholar