Accesso libero

Efficient Low-Temperature Nutrient Removal from Agricultural Digestate using Microalgae

 e   
09 dic 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Barkia I., Saari N., Manning S. R. Microalgae for high-value products towards human health and nutrition. Marine Drugs 2019:17(5):1–29. https://doi.org/10.3390/md17050304 Search in Google Scholar

Merlo A., Conti F. Bioactive Derivatives from Algae: Properties and Applications in Pharmaceuticals. Environ. Clim. Technol. 2023:27(1):438–449. https://doi.org/10.2478/rtuect-2023-0032 Search in Google Scholar

Fernández F. G. A., Reis A., Wijffels R. H., Barbosa M., Verdelho V., Llamas B. The role of microalgae in the bioeconomy. N. Biotechnol. 2021:61:99–107. https://doi.org/10.1016/j.nbt.2020.11.011 Search in Google Scholar

Rajesh Banu J., Kavitha Preethi S., Gunasekaran M., Kumar G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour. Technol. 2019:302:122822. https://doi.org/10.1016/j.biortech.2020.122822 Search in Google Scholar

Ahmad I., Abdullah N., Koji I., Yuzir A., Eva Muhammad S. Evolution of Photobioreactors: A Review based on Microalgal Perspective. IOP Conf. Ser. Mater. Sci. Eng. 2021:1142(1):012004. https://doi.org/10.1088/1757-899X/1142/1/012004 Search in Google Scholar

Hu J. Y., Sato T. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Convers. Manag. 2017:133:558–565. https://doi.org/10.1016/j.enconman.2016.11.008 Search in Google Scholar

Lu H. et al. Exploration of flashing light interaction effect on improving biomass, protein, and pigments production in photosynthetic bacteria wastewater treatment. J. Clean. Prod. 2021:348:131304. https://doi.org/10.1016/j.jclepro.2022.131304 Search in Google Scholar

Singh S. P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015:50:431–444. https://doi.org/10.1016/j.rser.2015.05.024 Search in Google Scholar

Abou-Shanab R. A. I., Ji M. K., Kim H. C., Paeng K. J., Jeon B. H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manage. 2013:115:257–264. https://doi.org/10.1016/j.jenvman.2012.11.022 Search in Google Scholar

Dahlin L. R. et al. Down-selection and outdoor evaluation of novel, halotolerant algal strains for winter cultivation. Front. Plant Sci. 2018:9:1–10. https://doi.org/10.3389/fpls.2018.01513 Search in Google Scholar

Ievina B., Romagnoli F. The potential of Chlorella species as a feedstock for bioenergy production: A review. Environ. Clim. Technol. 2020:24(2):203–220. https://doi.org/10.2478/rtuect-2020-0067 Search in Google Scholar

Fasaei F., Bitter J. H., Slegers P. M., van Boxtel A. J. B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research 2018:31:347–362. https://doi.org/10.1016/j.algal.2017.11.038 Search in Google Scholar

Zhao Z., Mertens M., Li Y., Muylaert K., Vankelecom I. F. J. A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae. Bioresour. Technol. 2020:300:122688. https://doi.org/10.1016/j.biortech.2019.122688 Search in Google Scholar

Li K. et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019:291:121934. https://doi.org/10.1016/j.biortech.2019.121934 Search in Google Scholar

Calderón C., Geelen J., Jossaert J.-M., Decorte M. Bioenergy Europe Statistical Report on Biogas. 2022. [Online]. [Accessed 15.08.2024]. Available: https://www.europeanbiogas.eu/wp-content/uploads/2022/07/SR22_Biogas_Fullversion.pdf Search in Google Scholar

Romagnoli F., Ievina B., Perera W. A. A. R. P., Ferrari D. Novel stacked modular open raceway ponds for microalgae biomass cultivation in biogas plants: Preliminary design and modelling. Environ. Clim. Technol. 2020:24(2):1–19. https://doi.org/10.2478/rtuect-2020-0050 Search in Google Scholar

Romagnoli F., Thedy A., Ievina B., Feofilovs M. Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project. Environ. Clim. Technol. 2023:27(1):117–136. https://doi.org/10.2478/rtuect-2023-0010 Search in Google Scholar

Romagnoli F. et al. Microalgae cultivation in a biogas plant: Environmental and economic assessment through a life cycle approach. Biomass and Bioenergy 2024:182:107116. https://doi.org/10.1016/j.biombioe.2024.107116 Search in Google Scholar

Musie W., Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023:9(8):e18685. https://doi.org/10.1016/j.heliyon.2023.e18685 Search in Google Scholar

Borowitzka M. A. Commercial-Scale Production of Microalgae for Bioproducts. In Blue Biotechnology: Production and use of marine molecules, La Barre S., Bates S. (Eds.), Vol. 1. Weinheim: Wiley-VCH, 2018:33–85. https://doi.org/10.1002/9783527801718.ch2 Search in Google Scholar

Cheregi O., Ekendahl S., Engelbrektsson J., Strömberg N., Godhe A., Spetea C. Microalgae biotechnology in Nordic countries – the potential of local strains. Physiol. Plant. 2019:166(1):438–450. https://doi.org/10.1111/ppl.12951 Search in Google Scholar

Allen M. M. Simple Conditions for Growth of Unicellular Blue‐Green Algae on Plates. J. Phycol. 1968:4(1):1–4. https://doi.org/10.1111/j.1529-8817.1968.tb04667.x Search in Google Scholar

Ievina B., Romagnoli F. Microalga Chlorella vulgaris 211/11j as a promising strain for low temperature climate. J. Appl. Phycol. 2024:36:1117–1124. https://doi.org/10.1007/s10811-024-03192-3 Search in Google Scholar

LVĢMC. Laikastākļu apskati, Gads 2021. (LVĜMC. Weather reviews, Year 2021). 2021. [Online]. [Accessed 15.09.2024]. Available: https://klimats.meteo.lv/operativais_klimats/laikapstaklu_apskati/arhivs/2021/gads/ (In Latvian). Search in Google Scholar

Lizzul A. M., Lekuona-Amundarain A., Purton S., Campos L. C. Characterization of chlorella sorokiniana, UTEX 1230. Biology (Basel) 2018:7(2):1–12. https://doi.org/10.3390/biology7020025 Search in Google Scholar

Kobayashi N. et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 2013:150:377–386. https://doi.org/10.1016/j.biortech.2013.10.032 Search in Google Scholar

Psachoulia P., Chatzidoukas C., Samaras P. Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water (Switzerland) 2024:16(3):485. https://doi.org/10.3390/w16030485 Search in Google Scholar

Raven J. A., Geider R. J. Temperature and algal growth. New Phytologyst 1988:110(4):441–461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x Search in Google Scholar

Franco M. C., Buffing M. F., Janssen M., Lobato C. V., Wijffels R. H. Performance of Chlorella sorokiniana under simulated extreme winter conditions. J. Appl. Phycol. 2012:24(4):693–699. https://doi.org/10.1007/s10811-011-9687-y Search in Google Scholar

Vonshak A., Novoplansky N. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J. Phycol. 2008:44(4):1071–1079. https://doi.org/10.1111/j.1529-8817.2008.00546.x Search in Google Scholar

L. Ministru kabinets. Ministru kabineta noteikumi Nr.34. Noteikumi par piesārņojošo vielu emisiju ūdenī, Rīgā 2002.gada 22.janvārī. (Republic of Latvia Cabinet Regulation No. 34, Regulations Regarding Discharge of Polluting Substances into Water Adopted 22 January 2002). 2002. In Latvian. Search in Google Scholar

Almomani F. A., Örmeci B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016:95:280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038 Search in Google Scholar

Lee S. A., Lee N., Oh H. M., Ahn C. Y. Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. J. Microbiol. Biotechnol. 2019:29(9):1434–1443. https://doi.org/10.4014/jmb.1905.05034 Search in Google Scholar

Wang H. et al. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. Bioresour. Technol. 2023:370:128483. https://doi.org/10.1016/j.biortech.2022.128483 Search in Google Scholar

Ievina B., Mantovani M., Marazzi F., Mezzanotte V., Romagnoli F. Application of activated carbon treated agricultural digestate for microalgae cultivation. Eur. Biomass Conf. Exhib. Proc. 2021:124–131. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro