Accesso libero

Towards a Unified Framework for District Heating Resilience

, ,  e   
02 nov 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Pakere I., Feofilovs M., Lepiksaar K., Vītoliņš V., Blumberga D. Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment. Energy 2023:285:129296. https://doi.org/10.1016/j.energy.2023.129296 Search in Google Scholar

Yuan M., Thellufsen J. Z., Sorknæs P., Lund H., Liang Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion Management 2021:244:114527. https://doi.org/10.1016/j.enconman.2021.114527 Search in Google Scholar

Osička J., Černoch F. European energy politics after Ukraine: The road ahead. Energy Res. Soc. Sci. 2022:91:102757. https://doi.org/10.1016/j.erss.2022.102757 Search in Google Scholar

International Energy Agency. Global Energy Crisis. [Online]. [Accessed 02.10.2024]. Available: https://www.iea.org/topics/global-energy-crisis Search in Google Scholar

Dafoss A/S Climate solutions. Designing a resilient district energy infrastructure. Danfoss, Sep. 2022. [Online]. [Accessed 02.10.2024]. Available: https://www.danfoss.com/en/about-danfoss/our-businesses/heating/district-energy-pioneer/new-white-paper-designing-a-resilient-district-energy-infrastructure/ Search in Google Scholar

Kacare M., Pakere I., Gravelsins A., Blumberga A. Impact Assessment of the Renewable Energy Policy Scenarios – a Case Study of Latvia. Environ. Clim. Technol. 2022:26(1):998–1019. https://doi.org/10.2478/rtuect-2022-0075 Search in Google Scholar

Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. Environ. Clim. Technol. 2023:27(1):964–979. https://doi.org/10.2478/rtuect-2023-0070 Search in Google Scholar

Hosseini M., Javanroodi K., Nik V. M. High-resolution impact assessment of climate change on building energy performance considering extreme weather events and microclimate – Investigating variations in indoor thermal comfort and degree-days. Sustain. Cities Soc. 2022:78:103634. https://doi.org/10.1016/j.scs.2021.103634 Search in Google Scholar

Park J., Seager T. P., Rao P. S. C., Convertino M., Linkov I. Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Analysis 2013:33(3):356–367. https://doi.org/10.1111/j.1539-6924.2012.01885.x Search in Google Scholar

Feofilovs M., Romagnoli F. Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia. Energy Procedia 2017:128:17–23, https://doi.org/10.1016/j.egypro.2017.09.007 Search in Google Scholar

Yang M., Sun H., Geng S. On the quantitative resilience assessment of complex engineered systems. Process Saf. Environ. Prot. 2023:174:941–950. https://doi.org/10.1016/j.psep.2023.05.019 Search in Google Scholar

Cai B., Xie M., Liu Y., Liu Y., Feng Q. Availability-based engineering resilience metric and its corresponding evaluation methodology. Reliab. Eng. Syst. Saf. 2018:172:216–224. https://doi.org/10.1016/j.ress.2017.12.021 Search in Google Scholar

Francis R., Bekera B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014:121:90–103. https://doi.org/10.1016/j.ress.2013.07.004 Search in Google Scholar

Vugrin E. D., Warren D. E., Ehlen M. A., Camphouse R.C. A Framework for Assessing the Resilience of Infrastructure and Economic Systems, in Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, Gopalakrishnan K., Peeta S. (Eds), Springer-Verlag, New York, NY, 2010. https://doi.org/10.1007/978-3-642-11405-2_3 Search in Google Scholar

Cottam B. J., Specking E. A., Small C. A., Pohl E. A., Parnell G. S., Buchanan R. K. Defining Resilience for Engineered Systems. Eng. Manag. Res. 2019:8(2):11. https://doi.org/10.5539/emr.v8n2p11 Search in Google Scholar

Mottahedi A., Sereshki F., Ataei M., Nouri Qarahasanlou A., Barabadi A. The Resilience of Critical Infrastructure Systems: A Systematic Literature Review. Energies 2021:14(6):1571. https://doi.org/10.3390/en14061571 Search in Google Scholar

Roege P. E., Collier Z. A., Mancillas J., McDonagh J. A., Linkov I. Metrics for energy resilience. Energy Policy 2014:72:249–256. https://doi.org/10.1016/j.enpol.2014.04.012 Search in Google Scholar

Amirioun M. H., Aminifar F., Lesani H., Shahidehpour M. Metrics and quantitative framework for assessing microgrid resilience against windstorms. Int. J. Electr. Power Energy Syst. 2019:104:716–723. https://doi.org/10.1016/j.ijepes.2018.07.025 Search in Google Scholar

Ashrafi R., Amirahmadi M., Tolou-Askari M., Ghods V. Multi-objective resilience enhancement program in smart grids during extreme weather conditions. Int. J. Electr. Power Energy Syst. 2021:129:106824. https://doi.org/10.1016/j.ijepes.2021.106824 Search in Google Scholar

Jasiūnas J., Lund P. D., Mikkola J. Energy system resilience – A review. Renew. Sustain. Energy Rev. 2021:150:111476. https://doi.org/10.1016/j.rser.2021.111476 Search in Google Scholar

Langer L., Skopik F., Smith P., Kammerstetter M. From old to new: Assessing cybersecurity risks for an evolving smart grid. Comput. Secur. 2016:62:165–176. https://doi.org/10.1016/j.cose.2016.07.008 Search in Google Scholar

Regional Group Nordic. 2022 Nordic and Baltic Grid Disturbance Statistics. ENTSO-E AISBL, 2023. [Online]. [Accessed 15.05.2024]. Available: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2023/2022_Nordic_and_Baltic_Grid_Disturbance_Statistics_FOR_PUBLISHING.pdf Search in Google Scholar

Sun Q., et al. Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination. Energy 2022:241:122834. https://doi.org/10.1016/j.energy.2021.122834 Search in Google Scholar

Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Applied Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075 Search in Google Scholar

Shafiei K., Zadeh S. G., Hagh M. T. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience. J. Energy Storage 2024:87:111339. https://doi.org/10.1016/j.est.2024.111339 Search in Google Scholar

Zhou Y. Climate change adaptation with energy resilience in energy districts – A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649 Search in Google Scholar

Johansson B. Security aspects of future renewable energy systems – A short overview. Energy 2013:61:598–605. https://doi.org/10.1016/j.energy.2013.09.023 Search in Google Scholar

Clegg S., Mancarella P. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies. Energy 2019:184:191–203. https://doi.org/10.1016/j.energy.2018.02.078 Search in Google Scholar

Moore E. A., Russell J. D., Babbitt C. W., Tomaszewski B., Clark S. S. Spatial modeling of a second-use strategy for electric vehicle batteries to improve disaster resilience and circular economy. Resour. Conserv. Recycl. 2020:160:104889. https://doi.org/10.1016/j.resconrec.2020.104889 Search in Google Scholar

Hussain A., Bui V.-H., Kim H.-M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy 2019:240:56–72. https://doi.org/10.1016/j.apenergy.2019.02.055 Search in Google Scholar

Kubule A., Kramens J., Bimbere M., Pedišius N., Blumberga D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024:17(2):383. https://doi.org/10.3390/en17020383 Search in Google Scholar

Zhou Y. Climate change adaptation with energy resilience in energy districts. A state-of-the-art review. Energy Build. 2023:279:112649. https://doi.org/10.1016/j.enbuild.2022.112649 Search in Google Scholar

ENTSOE. 2021 Nordic and Baltig grid disturbance statistics. Brussels, 2022. [Online]. [Accessed: 04.05.2024]. Available: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2022/2021_Nordic_and_Baltic_Grid_Disturbance_Statistics_FOR_PUBLISHING.pdf Search in Google Scholar

OtuozeA. O., MustafaM. W., LarikR. M. Smart grids security challenges: Classification by sources of threats. J. Electr. Syst. Inf. Technol. 2018:5(3):468–483. https://doi.org/10.1016/j.jesit.2018.01.001 Search in Google Scholar

LiuW., KlipD., Zappa W., Jelles S., Kramer G. J., Van Den Broek M. The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands. Energy 2019:189:116367. https://doi.org/10.1016/j.energy.2019.116367 Search in Google Scholar

Olsson O., Eriksson A., Sjöström J., Anerud E. Keep that fire burning: Fuel supply risk management strategies of Swedish district heating plants and implications for energy security. Biomass Bioenergy 2016:90:70–77. https://doi.org/10.1016/j.biombioe.2016.03.015 Search in Google Scholar

Karhunen A., Laihanen M., Ranta T. Supply security for domestic fuels at Finnish combined heat and power plants. Biomass Bioenergy 2015:77:45–52. https://doi.org/10.1016/j.biombioe.2015.03.019 Search in Google Scholar

Mao D., Wang P., Fang Y.-P., Ni L. Understanding District Heating Networks Vulnerability: A Comprehensive Analytical Approach with Controllability Consideration. Sustain. Cities Soc. 2024:101:105068. https://doi.org/10.1016/j.scs.2023.105068 Search in Google Scholar

Hallberg D., Stojanović B., Akander J. Status, needs and possibilities for service life prediction and estimation of district heating distribution networks. Struct. Infrastruct. Eng. 2012:8(1):41–54. https://doi.org/10.1080/15732470903213740 Search in Google Scholar

Mao D., Wang P., Wang W., Ni L. Reliability segment design in single-source district heating networks based on valve network models. Sustain. Cities Soc. 2020:63:102463. https://doi.org/10.1016/j.scs.2020.102463 Search in Google Scholar

Ding S., Gu W., Lu S., Yu R., Sheng L. Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism. Appl. Energy 2022:311:118650. https://doi.org/10.1016/j.apenergy.2022.118650 Search in Google Scholar

Hines P., Apt J., Talukdar S. Large blackouts in North America: Historical trends and policy implications. Energy Policy 2009:37(12):5249–5259. https://doi.org/10.1016/j.enpol.2009.07.049 Search in Google Scholar

Ouyang M., Dueñas-Osorio L. Multi-dimensional hurricane resilience assessment of electric power systems. Struct. Saf. 2014:48:15–24. https://doi.org/10.1016/j.strusafe.2014.01.001 Search in Google Scholar

Jufri F. H., Widiputra V., Jung J. State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies. Appl. Energy 2019:239:1049–1065. https://doi.org/10.1016/j.apenergy.2019.02.017 Search in Google Scholar

Bruneau M. et al. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003:19(4):733–752. https://doi.org/10.1193/1.1623497 Search in Google Scholar

Martišauskas L., Augutis J., Krikštolaitis R. Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strategy Rev. 2018:22:106–118. https://doi.org/10.1016/j.esr.2018.08.007 Search in Google Scholar

Molyneaux L., Brown C., Wagner L., Foster J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sustain. Energy Rev. 2016:59:1068–1079. https://doi.org/10.1016/j.rser.2016.01.063 Search in Google Scholar

Moslehi S., Reddy T. A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Appl. Energy 2018:228:487–498. https://doi.org/10.1016/j.apenergy.2018.06.075 Search in Google Scholar

Lai K., Illindala M. S. A distributed energy management strategy for resilient shipboard power system. Appl. Energy 2018:228:821–832. https://doi.org/10.1016/j.apenergy.2018.06.111 Search in Google Scholar

Vugrin E. D., Warren D. E., Ehlen M. A. A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 2011:30(3):280–290. https://doi.org/10.1002/prs.10437 Search in Google Scholar

Shinozuka M. et al. Resilience of Integrated Power and Water Systems (2003–2004). Search in Google Scholar

Panteli M., Mancarella P. The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience. IEEE Power Energy Mag. 2015:13(3):58–66. https://doi.org/10.1109/MPE.2015.2397334 Search in Google Scholar

Zimmerman N., Dahlquist E., Kyprianidis K. Towards On-line Fault Detection and Diagnostics in District Heating Systems. Energy Procedia 2017:105:1960–1966. https://doi.org/10.1016/j.egypro.2017.03.567 Search in Google Scholar

Cao S., Wang P., Wang W., Yao Y. Reliability evaluation of existing district heating networks based on a building’s realistic heat gain under failure condition. Sci. Technol. Built Environ. 2017:23(3):522–531. https://doi.org/10.1080/23744731.2017.1267491 Search in Google Scholar

Fouladvand J. Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters. Energy 2022:261:125353. https://doi.org/10.1016/j.energy.2022.125353 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro