Accesso libero

Bioactive Derivatives from Algae: Properties and Applications in Pharmaceuticals

INFORMAZIONI SU QUESTO ARTICOLO

Cita

El-Shafei R, Hegazy H, Acharya B. A Review of Antiviral and Antioxidant Activity of Bioactive Metabolite of Macroalgae within an Optimized Extraction Method. Energies 2021:14(11):3092. https://doi.org/10.3390/en14113092 Search in Google Scholar

Menaa F., Wijesinghe U., Thiripuranathar G., Althobaiti N. A., Albalawi A. E., Ali Khan B., Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Marine Drugs 2021:19(9):484. https://doi.org/10.3390/md19090484 Search in Google Scholar

Bertolini M., Conti F. Capture, storage and utilization of carbon dioxide by microalgae and production of biomaterials. Environmental and Climate Technologies 2021:25(1):574–586. https://doi.org/10.2478/rtuect-2021-0042 Search in Google Scholar

Bertolini M., Conti F. Alagae culture conditions and process parameters for phycoremediation and biomaterials production. Environmental and Climate Technologies 2022:26(1):1092–1105. https://doi.org/10.2478/rtuect-2022-0082 Search in Google Scholar

Ferdous U. T., Yusof Z. N. B. Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Frontiers in Pharmacology 2021:12:593116. https://doi.org/10.3389/fphar.2021.593116 Search in Google Scholar

Rani S., Gunjyal N., Ojha C. S. P., Singh R. P. Review of challenges for algae-based wastewater treatment: strain selection, wastewater characteristics, abiotic, and biotic factors. Journal of Hazardous, Toxic, and Radioactive Waste 2021:25(2):03120004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000578 Search in Google Scholar

Menaa F., Wijesinghe P. A. U. I., Thiripuranathar G., Uzair B., Iqbal H., Khan B. A., Menaa B. Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Marine Drugs 2020:18(12):641. https://doi.org/10.3390/md18120641 Search in Google Scholar

Zozaya-Valdés E., Roth-Schulze A. J., Thomas T. Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community. Frontiers in Microbiology 2016:7:161. https://doi.org/10.3389/fmicb.2016.00161 Search in Google Scholar

Khan M. l., Shin J. H., Kim J. D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 2018:17:36. https://doi.org/10.1186/s12934-018-0879-x Search in Google Scholar

de Morais M. G., Vaz B. D. S., de Morais E. G., Costa J. A. V. Biologically active metabolites synthesized by microalgae. BioMed Research International 2015:435265. https://doi.org/10.1155/2015/835761 Search in Google Scholar

Michalak I., Chojnacka K. Algae as production systems of bioactive compounds. Engineering in Life Sciences 2015:15(2):160–176. https://doi.org/10.1002/elsc.201400191 Search in Google Scholar

Dai N., Wang Q., Xu B., Chen H. Remarkable natural biological resource of algae for medical applications. Frontiers in Marine Science 2022:9:1060. https://doi.org/10.3389/fmars.2022.912924 Search in Google Scholar

Aziz E., Batool R., Khan M. U., Rauf A., Akhtar W., Heydari M., Rehman S., Shahzad T., Malik A., Mosavat S. H., Plygun S., Shariati M. A. An overview on red algae bioactive compounds and their pharmaceutical applications, Journal of Complementary & Integrative Medicine 2020:17. https://doi.org/10.1515/jcim-2019-0203 Search in Google Scholar

Zhuang D., He N., Khoo K. S., Ng E. P., Chew K. W., Ling T. C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 2022:291(Pt2):132932. https://doi.org/10.1016/j.chemosphere.2021.132932 Search in Google Scholar

Liu X., Yuan W. Q., Sharma-Shivappa R., van Zanten J. Antioxidant activity of phlorotannins from Brown algae. International Journal of Agricultural and Biological Engineering 2017:10(6):184–191. https://doi.org/10.25165/j.ijabe.20171006.2854 Search in Google Scholar

Yap W. F., Tay V., Tan S. H., Yow Y. Y., Chew J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019:8(3):152. https://doi.org/10.3390/antibiotics8030152 Search in Google Scholar

Wang L., Jayawardena T. U., Yang H. W., Lee H. G., Kang M.-C., Sanjeewa K. K. A., Oh J. Y., Jeon Y.-J. Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed. Hizikia fusiforme. Antioxidants (Basel) 2020:9(5):363. https://doi.org/10.3390/antiox9050363 Search in Google Scholar

Besednova N. N., Andryukov B. G., Zaporozhets T. S., Kryzhanovsky S. P., Fedyanina L. N., Kuznetsova T. A., Zvyagintseva T. N., Shchelkanov M. Y. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021:9(2):200. https://doi.org/10.3390/biomedicines9020200 Search in Google Scholar

Park J. Y., Yuk H. J., Ryu H. W., Lim S. H., Kim K. S., Park K. H., Ryu Y. B., Lee W. S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2017:32(1):504–515. https://doi.org/10.1080/14756366.2016.1265519 Search in Google Scholar

Lomartire S., Gonçalves A. M. M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Marine Drugs 2022:20(2):141. https://doi.org/10.3390/md20020141 Search in Google Scholar

El-Shafay S. M., Ali S. S., El-Sheekh M. M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research 2016:42(1):65–74. https://doi.org/10.1016/j.ejar.2015.11.006 Search in Google Scholar

Shannon E., Abu-Ghannam N., Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Marine Drugs 2016:14(4):8. https://doi.org/10.3390/md14040081 Search in Google Scholar

Souza R. B., et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. International Journal of Biological Macromolecules 2018:112:1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.02.029 Search in Google Scholar

Ayyad S. E., Al-Footy K. O., Alarif W. M., Sobahi T. R., Bassaif S. A., Makki M. S., Asiri A. M., Al Halwani A. Y., Badria A. F., Badria F. A. Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chemical & Pharmaceutical Bulletin 2011:59(10):1294–1298. https://doi.org/10.1248/cpb.59.1294 Search in Google Scholar

Pradhan B., et al. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2021:26(1):37. https://doi.org/10.3390/molecules26010037 . Search in Google Scholar

Mateos R., Pérez-Correa J. R., Domínguez H. Bioactive Properties of Marine Phenolics. Marine Drugs 2020:18(10):501. https://doi.org/10.3390/md18100501 Search in Google Scholar

Sharifuddin Y., Chin Y. X., Lim P. E., Phang S. M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Marine Drugs 2015:13(8):5447–5491. https://doi.org/10.3390/md13085447 Search in Google Scholar

Di Meglio L. A., Evans-Molina C., Oram R. A. Type 1 diabetes. The Lancet 2018:391(10138):2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5 Search in Google Scholar

Italian National Institute of Health. 2023. [Online]. [Accessed: 12.06.2023]. Available: https://www.iss.it/en/home Search in Google Scholar

Gunathilaka T. L., Samarakoon K., Ranasinghe P., Peiris L. D. C. Antidiabetic potential of marine brown algae – a mini review. Journal of Diabetes Research 2020:1230218. https://doi.org/10.1155/2020/1230218 Search in Google Scholar

Lee S. H., Jeon Y. J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013:86:129–136. https://doi.org/10.1016/j.fitote.2013.02.013 Search in Google Scholar

Abo-Shady A. M., Gheda S. F., Ismail G. A., Cotas J., Pereira L., Abdel-Karim O. H. Antioxidant and Antidiabetic Activity of Algae. Life 2023:13(2):460. https://doi.org/10.3390/life13020460 Search in Google Scholar

Yuan Y., Zheng Y., Zhou J., Geng Y., Zou P., Li Y., Zhang C. Polyphenol-Rich Extracts from Brown Macroalgae Lessonia trabeculate Attenuate Hyperglycemia and Modulate Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Journal of Agricultural and Food Chemistry 2019:67(45):12472–12480. https://doi.org/10.1021/acs.jafc.9b05118 Search in Google Scholar

Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42(2):1099–1104. https://doi.org/10.1039/c7nj03199h Search in Google Scholar

Wiedemannn L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. 25th European Biomass Conference and Exhibition Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14 Search in Google Scholar

Conti F., Wiedemann L., Saidi A., Sonnleitner M., Goldbrunner M. Mixing of a model substrate in a scale-down laboratory digester and processing with a computational fluid dynamics model. 26th European Biomass Conference and Exhibition Proceedings 2018:811–815. https://doi.org/10.5071/26thEUBCE2018-2CV.5.34 Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other