Accesso libero

Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Andersen A. R. Algal culturing techniques. San Diego, California: Elsevier Academic Press, 2005. Search in Google Scholar

[2] Wen Z., Johnson M. Microalgae as feedstock for biofuel production. Virginia Cooperative Extension Publication, 2009. Search in Google Scholar

[3] Tredici M. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 2010:1:143–162. https://doi.org/10.4155/bfs.09.10 Search in Google Scholar

[4] Komagata K., Sugawara H. e Y. Ugawa, World Catalog of Algae, second edition. WFCC World Data Center on Microorganism, Saitama, Japan: RIKEN, 1989. Search in Google Scholar

[5] Preisig R. H., Robert A. A. Historical review of algal culturing techniques. In Algal culturing techniques, San Diego, California, Elsevier Academic Press, 2005:1–12. https://doi.org/10.1016/B978-012088426-1/50002-0 Search in Google Scholar

[6] Spoehr H. A., Milner H. W. Chlorella as a source of food. Yearb. Canegie Inst. Wash., 1947. Search in Google Scholar

[7] Cook P. M. Some problems in the large-scale culture of Chlorella. in The Culturing of Algae, Yellow Springs, Ohio, Antioch Press, 1950:53–75. Search in Google Scholar

[8] Pirson A., Lorenzen H. Synchronized dividing algae. Annual Rev. Plant Physiol 1966:58–439. https://doi.org/10.1146/annurev.pp.17.060166.002255 Search in Google Scholar

[9] Park H., Lee C. -G. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnology Journal 2016:11:1461–1470. https://doi.org/10.1002/biot.201600041 Search in Google Scholar

[10] Adesanya V. O., Davey M. P., Scott S. A., Smith A. G. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technology 2014:157:293–304. https://doi.org/10.1016/j.biortech.2014.01.032 Search in Google Scholar

[11] Gonzalez-Fernandez C., et al. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol Biofuels 2018:11:184. https://doi.org/10.1186/s13068-018-1188-7 Search in Google Scholar

[12] Chynoweth D. Review of Biomethane from Marine biomass. University of Florida, 2002. Search in Google Scholar

[13] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8 Search in Google Scholar

[14] Pachauri R., Reisinger A. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 2007. Search in Google Scholar

[15] Pires J., Martins F. Recent developments on carbon capture and storage: an overview. Chemical Engineering Research and Design 2011:89(9):1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028 Search in Google Scholar

[16] Lam M., Lee K., Mohamed A. Current status and challenges on microalgal-based carbon capture. Internetional Journal of Greenhouse Gas Control 2012:10:456–469. https://doi.org/10.1016/j.ijggc.2012.07.010 Search in Google Scholar

[17] Lam M., Lee K. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol Adv 2012:30(3):73–90. https://doi.org/10.1016/j.biotechadv.2011.11.008 Search in Google Scholar

[18] Morales M. d. M. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Research 2015:9:297–305. https://doi.org/10.1016/j.algal.2015.03.018 Search in Google Scholar

[19] Bilanovic D., Andargatchew A., Kroeger T. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Conversion and Management 2009:50(2):262–267. https://doi.org/10.1016/j.enconman.2008.09.024 Search in Google Scholar

[20] Ramanna L., Guldhe A., Rawat I., Bux F. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour. Technol. 2014:168:127–135. https://doi.org/10.1016/j.biortech.2014.03.064 Search in Google Scholar

[21] Marazzi F., Bellucci M., Rossi R., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430 Search in Google Scholar

[22] Saharan B., Sharma D., Sahu R. S. O., Warren A. Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 2013:1–21. Search in Google Scholar

[23] Borowitzka M. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 1999:35:313–321. https://doi.org/10.1016/S0079-6352(99)80123-4 Search in Google Scholar

[24] Moheimani N. The culture of coccolithophorid algae for carbon dioxide bioremediation. Murdoch University, Pert, Australia, 2005. Search in Google Scholar

[25] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, Germany, De Gruyter, 2012:113–146. https://doi.org/10.1515/9783110225020.113 Search in Google Scholar

[26] Tredici M. Mass production of microalgae: hotobioreactors. Microalgal Culture, Blackwell Science 2004:178–214. https://doi.org/10.1002/9780470995280.ch9 Search in Google Scholar

[27] Stephenson A., Kazamia E., Dennis J., Howe C., Scott S., Smith A. Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy & Fuels 2010:24:4062–4077. https://doi.org/10.1021/ef1003123 Search in Google Scholar

[28] Alcaine A. Biodiesel from microalgae, Final degree project. Royal School of Technology Kungliga Tekniska Högskolan, Stockholm, Sweden, 2010. Search in Google Scholar

[29] Borowitzka M. Culturing Microalgae in Outdoor Ponds. In Algal Culturing Techniques, San Diego, California, Elsevier Academic Press, 2005:205–2018. https://doi.org/10.1016/B978-012088426-1/50015-9 Search in Google Scholar

[30] Spruijt J., Schipperus R., Kootstra M., Visser C. d., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015. Search in Google Scholar

[31] Xu L., Weathers P., Xiong X., Liu C. Microalgal bioreactors: Challenges and opportunities. Eng. life Sci. 2009:9:178–189. https://doi.org/10.1002/elsc.200800111 Search in Google Scholar

[32] Grobbelaar J. Mass Production of Microalgae at Optimal Photosynthetic Rates, Dubinsky Z (ed) Photosynthesis. InTech, 2013. Search in Google Scholar

[33] White D., et al. Best Practices for the Pilot-Scale Cultivation of Microalgae. Public Output report of the EnAlgae project, Swansea, 2015. Search in Google Scholar

[34] Gerardo M. L., Van den Hende S., Vervaeren H., Coward T., Skill S. Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Research 2015:11:248–262. https://doi.org/10.1016/j.algal.2015.06.019 Search in Google Scholar

[35] Carlsson A., Van Bielen J. Micro-and macro-algae: utility for industrial applications. UK: CPL Press, 2007. Search in Google Scholar

[36] Barreiro-Vescovo S., Barbera E., Bertucco A., Sforza E. Integration of Microalgae Cultivation in a Biogas Production Process from Organic Municipal Solid Waste: From Laboratory to Pilot Scale. ChemEngineering 2020:4(2):25. https://doi.org/10.3390/chemengineering4020025 Search in Google Scholar

[37] Habouzit F., Hamelin J., Santa-Catalina G., Steyer J.-P., Bernet N. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm archaea community is highly dependent on the support material. Microb. Biotechnology 2014:7:257–264. https://doi.org/10.1111/1751-7915.12115 Search in Google Scholar

[38] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8 Search in Google Scholar

[39] Yoo C., Jun S., Lee J. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 2010:101(1s):S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030 Search in Google Scholar

[40] Spruijt J., Schipperus R., Kootstra M., d. Visser C., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015. Search in Google Scholar

[41] Huntley M., Redalje D. CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation and Adpotion Strat. for Global Change 2007:12:273–608. https://doi.org/10.1007/s11027-006-7304-1 Search in Google Scholar

[42] Norsker N., Barbosa M., Vermue M., Wijffels R. Microalgal Production – A Close Look at the Economics. Biotechnology Advances 2011:29(1):24–27. https://doi.org/10.1016/j.biotechadv.2010.08.005 Search in Google Scholar

[43] Dębowski M., Zieliński M., Kazimierowicz J., Kujawska N., Talbierz S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development – Advantages and Limitations. Sustainability 2020:12(23):9980. https://doi.org/10.3390/su12239980 Search in Google Scholar

[44] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056 Search in Google Scholar

[45] Romagnoli F. SMORPs project, s.n., Riga, Latvia, 2018. Search in Google Scholar

[46] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, C. Posten & C. Walter (Eds.). De Gruyter, 2013. https://doi.org/10.1515/9783110225020.113 Search in Google Scholar

[47] Van der Weide R., Schipperus R., van Dijk W. Algae cultivation using digestate as a nutrient source: opportunities and challenges. Proceedings European Biomass Congress and Exhibition, Hamburg, 2014. Search in Google Scholar

[48] Ugetti E., Sialve B. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microlagae productivity. Biosource Technology 2014:152:437–443. https://doi.org/10.1016/j.biortech.2013.11.036 Search in Google Scholar

[49] Cai T., Park S., Racharaks R., Li Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy 2013:108:486–492. https://doi.org/10.1016/j.apenergy.2013.03.056 Search in Google Scholar

[50] Van Dijk W., Van der Weide R., Van Gennep C. Algae production pilot open ponds Lelystad, Wageningen, UR: ACRRES, 2016. Search in Google Scholar

[51] Brown L. M. Uptake of carbon dioxide from flue gas by microalgae. Energy Convers. Manag. 1996:37(6–8):1363–1367. https://doi.org/10.1016/0196-8904(95)00347-9 Search in Google Scholar

[52] Cremaschi S., Yadala S. A Dynamic Optimization Model for Designing Open-Channel Raceway Ponds for Batch Production of Algal Biomass. Processes 2016:4(2):10. https://doi.org/10.3390/pr4020010 Search in Google Scholar

[53] EnAlgae: an INTERREG IVB North West Strategic Initiative. [Online]. [Accessed: 11.06.2022]. Available: http://www.enalgae.eu/ Search in Google Scholar

[54] Marazzi F., Bellucci M., Rossi S., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430 Search in Google Scholar

[55] Lee E., Jalalizadeh M., Zhang M. Growth kinetic models for microalgae cultivation: A review. Algal Research 2015:12:497˗512. https://doi.org/10.1016/j.algal.2015.10.004 Search in Google Scholar

[56] Liu J., Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology. Springer, Switzerland 2016:1–37. https://doi.org/10.1007/10_2014_286 Search in Google Scholar

[57] Mata T., Martins A., Caetano N. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 2010:14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020 Search in Google Scholar

[58] Keevallik S., Loitjarv K. Solar radiation at the surface in the Baltic Proper. Oceanologia 2010:52(4):583–597. https://doi.org/10.5697/oc.52-4.583 Search in Google Scholar

[59] Dijk W., Weide R., Gennep C. Algae production pilot open ponds Lelystad. ACRRES, Wageningen UR, 2016. Search in Google Scholar

[60] Sager J., Farlane C. Radiation. Plant Growth Chamber Handbook. North Central Regional Research Publication. 1997:1–30. Search in Google Scholar

[61] Smith C., Lof G., Jones R. Measurement and analysis of evaporation from an inactive outdoor swimming pool. Solar Energy 1994:53(1):3–7. https://doi.org/10.1016/S0038-092X(94)90597-5 Search in Google Scholar

[62] Rogers R., Yau M. A Short Course in Cloud Physics. Pergamon Press, 1989. Search in Google Scholar

[63] Sun C., Fu Q., Liao Q. X. A., Huang Y., Zhu X. A., Chang H. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 2019:171:1033–1045. https://doi.org/10.1016/j.energy.2019.01.074 Search in Google Scholar

[64] Zaimes G., Khanna V. Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnology for Biofuels 2013:6:Article 88. https://doi.org/10.1186/1754-6834-6-88 Search in Google Scholar

[65] Apel A., Weuster-Botz D. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess and Biosystems Engineering 2015:38:995–1008. https://doi.org/10.1007/s00449-015-1363-1 Search in Google Scholar

[66] Pérez Lopéz P., ge Vree J. H., Feijoo G., Bosma R., Barbosa M., Moreira M., Wijffels R. H., van Boxtel A. J. B., Kleinegris D. M. M. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Applied Energy 2017:205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102 Search in Google Scholar

[67] Pasell H., Dhaliwal H., Reno M., Wu B., Amotz A., Ivry E., Czartoski T. Algae biodoesel life cycle assessment using current commercial data. Journal of Environmental Management 2013:129:103–111. https://doi.org/10.1016/j.jenvman.2013.06.055 Search in Google Scholar

[68]. Jolliet O., et al. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 2003:8:324–330. https://doi.org/10.1007/BF02978505 Search in Google Scholar

[69]. Humbert S. et al. IMPACT 2002+: User Guide, 2012. [Online]. [Accessed: 05.09.2022]. Available: https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf Search in Google Scholar

[70] Verberkt B. Proefonderzoek algenfarming: terugwinnen van stikstof en fosfaat als grondstof uit afvalwater. (Algae farming pilot study: recovery of nitrogen and phosphate as raw materials from waste water). Lochem, 2012. (In Dutch). Search in Google Scholar

[71] Uijterlinde C., Heijkoop N. Effluentpolishing met algentechnologie. (Effluent polishing with algae technology). STOWA, Utrecht, 2010. (In Dutch) Search in Google Scholar

[72] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056 Search in Google Scholar

[73] Collet P., Hélias A., Lardon L., Ras M., Goy R., Steyer J. Life-cycle assessment of microalgae culture coupled to biogas production. Biosource Technology 2011:102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154 Search in Google Scholar

[74] Sfez S., Van de Hende S., Taelman E., Meester S., Dewulf J. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresource Technology 2015:190:321–331. https://doi.org/10.1016/j.biortech.2015.04.088 Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other