Accesso libero

The Effect of Fresnel Lens Focal Point Location on Heat Transfer in Phase Change Material (PCM) Enhanced Dynamic Solar Facade

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Global Data. Global construction industry set to grow by 5.2% in 2021, according to GlobalData. [Online]. [Accessed: 10.10.2022]. Available: https://www.globaldata.com/media/construction/global-construction-industry-set-grow-5-2-2021according-globaldata/#:~:text=Following%20the%20historic%20collapse%20in,leading%20data%20and%20a nalytics%20company Search in Google Scholar

[2] European Commission. Delivering the European. 2021. Search in Google Scholar

[3] Felseghi R.-A., Bolboacă A. R., Raboaca M.-S., Aşchilean I. Hybrid Energy Systems for Power of Sustainable Buildings. Case Study: A Renewable Energy Based on-Site Green Electricity Production. Comprehensive Renewable Energy 2022:4:420–436. https://doi.org/10.1016/B978-0-12-819727-1.00037-610.1016/B978-0-12-819727-1.00037-6 Search in Google Scholar

[4] Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.00510.1016/j.rser.2019.01.005 Search in Google Scholar

[5] Vassiliades C., Agathokleous R., Barone G., Forzano C., Giuzio G. F., Palombo A., Buonomano A., Kalogirou S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renewable and Sustainable Energy Reviews 2022:164:112482. https://doi.org/10.1016/j.rser.2022.11248210.1016/j.rser.2022.112482 Search in Google Scholar

[6] Lyden A., Brown C. S., Kolo I., Falcone G., Friedrich D. Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches. Renewable and Sustainable Energy Reviews 2022:167:112760. https://doi.org/10.1016/j.rser.2022.11276010.1016/j.rser.2022.112760 Search in Google Scholar

[7] Santos José J. C. S., Palacio José C. E., Reyes Arnaldo M. M., Carvalho M., Freire A. J. R., Barone M. A. Concentrating Solar Power. Advances in Renewable Energies and Power Technologies 2018:1:373–402. https://doi.org/10.1016/B978-0-12-812959-3.00012-510.1016/B978-0-12-812959-3.00012-5 Search in Google Scholar

[8] Weiss W., Spörk-Dür M. Solar Heat World 2022. Global Market Development and Trends 2021. Detailed Market Figures 2020. https://doi.org/10.18777/ieashc-shw-2021-000110.18777/ieashc-shw-2021-0001 Search in Google Scholar

[9] Sarbu I., Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability (Switzerland). 2018:10(1). https://doi.org/10.3390/su1001019110.3390/su10010191 Search in Google Scholar

[10] Sari A.. Thermal Energy Storage and Applications Using Phase Change Materials. 3rd International Turkic World Conference on Chemical Sciences and Technologies. 2017. Search in Google Scholar

[11] De Gracia A., Cabeza L. F. Phase change materials and thermal energy storage for buildings. Energy and Buildings 2015:103:414–419. https://doi.org/10.1016/j.enbuild.2015.06.00710.1016/j.enbuild.2015.06.007 Search in Google Scholar

[12] Saffari M., Roe C., Finn D. P. Improving the building energy flexibility using PCM-enhanced envelopes. Applied Thermal Engineering 2022:217:119092. https://doi.org/10.1016/j.applthermaleng.2022.11909210.1016/j.applthermaleng.2022.119092 Search in Google Scholar

[13] Kalbasi R., Hassani P. Buildings with less HVAC power demand by incorporating PCM into envelopes taking into account ASHRAE climate classification. Journal of Building Engineering 2022:51:104303. https://doi.org/10.1016/j.jobe.2022.10430310.1016/j.jobe.2022.104303 Search in Google Scholar

[14] Alshuraiaan B. Efficient Utilization of Pcm in Building Envelope in a Hot Environment Condition. International Journal of Thermofluids 2022:16:100205. https://doi.org/10.1016/j.ijft.2022.10020510.1016/j.ijft.2022.100205 Search in Google Scholar

[15] Ajour M. N., Abduaal M. J., Hariri F. A., Abu-Hamdeh N. H., Karimipour A. Reducing electricity demand by integrating a sustainable pack into HVAC- adding PCM in sustainable pack as well as building envelopes. Journal of Building Engineering 2022:57:104915. https://doi.org/10.1016/j.jobe.2022.10491510.1016/j.jobe.2022.104915 Search in Google Scholar

[16] Piselli C., Prabhakar M., De Gracia A., Saffari M., Pisello A. L., Cabeza L. F. Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy 2020:162:171–181. https://doi.org/10.1016/j.renene.2020.07.04310.1016/j.renene.2020.07.043 Search in Google Scholar

[17] Al-mudhafar A. H. N., Hamzah M. T., Tarish A. L. Potential of integrating PCMs in residential building envelope to reduce cooling energy consumption. Case Studies in Thermal Engineering 2021:27:101360. https://doi.org/10.1016/j.csite.2021.10136010.1016/j.csite.2021.101360 Search in Google Scholar

[18] Abu-Hamdeh N. H., Melaibari A. A., Alquthami T. S., Khoshaim A., Oztop H. F., Karimipour A. Efficacy of incorporating PCM into the building envelope on the energy saving and AHU power usage in winter. Sustainable Energy Technologies and Assessments 2021:43:100969. https://doi.org/10.1016/j.seta.2020.10096910.1016/j.seta.2020.100969 Search in Google Scholar

[19] Bumanis G., Bajare D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environmental and Climate Technologies 2022:26(1):524–534. https://doi.org/10.2478/rtuect-2022-004010.2478/rtuect-2022-0040 Search in Google Scholar

[20] Gholamibozanjani G., Farid M. A comparison between passive and active PCM systems applied to buildings. Renewable Energy 2020:162:112–123. https://doi.org/10.1016/j.renene.2020.08.00710.1016/j.renene.2020.08.007 Search in Google Scholar

[21] Arumugam P., Ramalingam V., Vellaichamy P. Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates – A review. Energy and Buildings 2022:258:111840. https://doi.org/10.1016/j.enbuild.2022.11184010.1016/j.enbuild.2022.111840 Search in Google Scholar

[22] Shen J., Wang Z., Luo Y., Xu J., Zhao H., De’en Cui., Tian Z. Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering 2022:59:105123. https://doi.org/10.1016/j.jobe.2022.10512310.1016/j.jobe.2022.105123 Search in Google Scholar

[23] Luo Y., De’en Cui, Cheng N., Zhang S., Su X., Chen X., Tian Z., Deng J., Fan J. A novel active building envelope with reversed heat flow control through coupled solar photovoltaic-thermoelectric-battery systems. Building and Environment 2022:222:109401. https://doi.org/10.1016/j.buildenv.2022.10940110.1016/j.buildenv.2022.109401 Search in Google Scholar

[24] Balaji D., Sivalingam S., Bhuvaneswari V., Amarnath V., Adithya J., Balavignesh V., Ganesh Surya R. Aerogels as alternatives for thermal insulation in buildings – A comparative teeny review. Materials Today: Proceedings 2022:62(P8):5371–5377. https://doi.org/10.1016/j.matpr.2022.03.54110.1016/j.matpr.2022.03.541 Search in Google Scholar

[25] Narbuts J., Vanaga R., Freimanis R., Blumberga A. Laboratory Testing of Small-Scale Active Solar Façade Module. Environmental and Climate Technologies 2021:25(1):455–466. https://doi.org/10.2478/rtuect-2021-003310.2478/rtuect-2021-0033 Search in Google Scholar

[26] Cho Y., Kim J.-J. Lifetime decrease of halogen lamps for automotive by duty cycle stress. IEEE Transactions on Reliability 2011:60(3):550–556. https://doi.org/10.1109/TR.2011.213573010.1109/TR.2011.2135730 Search in Google Scholar

[27] Hume R. A. Tungsten halogen lamps. Lamps and Lighting 2012:177–193. Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other