INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] IPCC. Climate Change and Water. IPCC Technical Report VI. Geneva: IPCC, 2013. Search in Google Scholar

[2] Lepane V., et al. Impact of seasonal climate change on optical and molecular properties of river water dissolved organic matter by HPLC-SEC and UV-vis spectroscopy. Chemical and Biological Technologies in Agriculture 2015:2:14. https://doi.org/10.1186/s40538-015-0040-610.1186/s40538-015-0040-6 Search in Google Scholar

[3] Baveye P. C., et al. Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions. Front. Environ. Sci. 2020:8:579904. https://doi.org/10.3389/fenvs.2020.57990410.3389/fenvs.2020.579904 Search in Google Scholar

[4] Garnier A., et al. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems. Global Change Biology 2017:23(12):5237–5248. https://doi.org/10.1111/gcb.1378610.1111/gcb.13786 Search in Google Scholar

[5] Mckee D., et al. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany 2002:74:1:71–83. https://doi.org/10.1016/S0304-3770(02)00048-710.1016/S0304-3770(02)00048-7 Search in Google Scholar

[6] Bhupinder D. Status of Aquatic Macrophytes in Changing Climate: A Perspective. Journal of Environmental Science and Technology 2015:8(4):139–148. https://doi.org/10.3923/jest.2015.139.14810.3923/jest.2015.139.148 Search in Google Scholar

[7] Carpenter S. R., et al. Global change and freshwater ecosystems. Annual Review of Ecology and Systematics 1992:23:119–139. https://doi.org/10.1146/annurev.es.23.110192.00100310.1146/annurev.es.23.110192.001003 Search in Google Scholar

[8] Smith V. H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research 2003:10(2):126–139. https://doi.org/10.1065/espr2002.12.14210.1065/espr2002.12.14212729046 Search in Google Scholar

[9] Woolway R. I., Kraemer B. M., Lenters J. D. Global lake responses to climate change. Nature Reviews Earth and Environment 2020:1:388–403. https://doi.org/10.1038/s43017-020-0067-510.1038/s43017-020-0067-5 Search in Google Scholar

[10] Brönmark C., Hansson L. A. The Biology of Lakes and Ponds. New York: Oxford University Press, 2010. Search in Google Scholar

[11] Heikkinen R. K., et al. Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2009:2:1–32. https://doi.org/10.3897/biorisk.2.4.10.3897/biorisk.2.4 Search in Google Scholar

[12] Riis T., et al. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 2012:102:56–64. https://doi.org/10.1016/j.aquabot.2012.05.00210.1016/j.aquabot.2012.05.002 Search in Google Scholar

[13] Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union 2014:L 3174/35. Search in Google Scholar

[14] Simpson D. A. A short history of the introduction and spread of Elodea canadensis Michx in the British Isles. Watsonia 1984:15:1–14. Search in Google Scholar

[15] Starcs K. Kanādas elodejas 100 gadi Eiropā. Daba un Zinātne (100 years of Elodea canadensis in Europe. Nature and Science) 1937:6:193–196. (in Latvian) Search in Google Scholar

[16] Herder F. Botanisches Centralblatt. Referirendes Organ für das Gesammtgebietder Botanik des In- and Ausland (Botanical central leaf. Referring body for the whole area of botany at home and abroad). 1891:12:4–5. (in German) Search in Google Scholar

[17] Grīnberga L., Priede A. Elodea canadensis Michx. in Latvia. Acta Biol. Univ. Daug. 2010:10(1):43–50. Search in Google Scholar

[18] Kozhova O. M., Izhnoldina L. A. Spread of Elodea canadensis in Lake Baikal. Hydrobiologia 1993:259:203–211. https://doi.org/10.1007/BF0002752810.1007/BF00027528 Search in Google Scholar

[19] Ozimek T., van Donk E., Gulati R. Growth and nutrient uptake by two species of Elodea in experimental condition and their role in nutrient accumulation in a macrophyte-dominated lake. Hydrobiologia 1993:251:13–18. https://doi.org/10.1007/BF0000715910.1007/BF00007159 Search in Google Scholar

[20] Weidema I. R. Introduced species in the Nordic countries. Århus: Nordic Council of Ministers, 2000. Search in Google Scholar

[21] Haslam S. M. Phragmites Communis Trin. (Arundo Phragmites L.,? Phragmites Australis (Cav.) Trin. ex Steudel). Journal of Ecology 1972:60:585–610. https://doi.org/10.2307/225836310.2307/2258363 Search in Google Scholar

[22] Haslam S. M. The Reed: A Study of Phragmites communis Trin, in Relation to Its Cultivation and Harvesting in East Anglia for the Thatching Industry. Norwich: Norfolk Reed Growers Association, 1969. Search in Google Scholar

[23] Spence D. H. N. The macrophytic vegetation of freshwater lochs, swamps and associated fens. The Vegetation of Scotland. Edinburgh: Oliver & Boyd, 1964:306–425. Search in Google Scholar

[24] Haslam S. M. The Reed. Norwich: Norfolk Reed Growers Association, 2009. Search in Google Scholar

[25] Pearcy R., Berry J., Bartholoomew B. Field photosynthetic performance and leaf temperatures of Phragmites communis under summer conditions in Death Valley, California. Photosynthetica 1974:8:104–108. Search in Google Scholar

[26] Roberts J. Changes in Phragmites australis in south-eastern Australia: a habitat assessment. Folia Geobotanica 2000:35:353–362. https://doi.org/10.1007/BF0280354810.1007/BF02803548 Search in Google Scholar

[27] Davies R. J. P., Mackay D. A., Whalen M. A. Competitive effects of Phragmites australis on the endangered artesian spring endemic Eriocaulon carsonii. Aquatic Botany 2010:92(4):245–249. https://doi.org/10.1016/j.aquabot.2009.12.00310.1016/j.aquabot.2009.12.003 Search in Google Scholar

[28] Packer J. G., et al. Biological Flora of the British Isles: Phragmites australis. Journal of Ecology 2017:105(4):1123–1162. https://doi.org/10.1111/1365-2745.1279710.1111/1365-2745.12797 Search in Google Scholar

[29] Purmalis O., Kļaviņš L., Arbidans L. Ecological quality of freshwater lakes and their management applications in urban territory. Proceedings of the Research for Rural Development 2019:1:103–110. https://doi.org/10.22616/rrd.25.2019.01610.22616/rrd.25.2019.016 Search in Google Scholar

[30] Rice E. W., et al. Standard methods for the examination of water and wastewater. 21st Ed. Washington: APHA, 2005. Search in Google Scholar

[31] Hach water analysis handbook. Loveland: Hach Co., 2002. Search in Google Scholar

[32] Hillebrand H., Claus-Dieter D., Kirschtel D. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 1999:35(2):403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x10.1046/j.1529-8817.1999.3520403.x Search in Google Scholar

[33] ERAF 2014–2020 projects; Restoration of Bolupe water drain [Online]. [Accessed 20.01.2021]. Available: http://www.zmni.lv/eiropas-projekts/bolupes-udensnotekas-atjaunosana/ (in Latvian) Search in Google Scholar

[34] Latkovska I., et al. Forecasted changes in the climate and the river runoff regime in Latvian river basins. Baltica 2015:25(2):143–152. https://doi.org/10.5200/baltica.2012.25.1410.5200/baltica.2012.25.14 Search in Google Scholar

[35] Apsīte A., et al. Climate change impacts on river runoff in Latvia. Climate Research 2011:48:57–71. https://doi.org/10.3354/cr0100410.3354/cr01004 Search in Google Scholar

[36] Kļaviņš M., Rodinovs V., Dravniece A. Large-scale atmospheric circulation processes as a driving force in the climatic turning ponts and regime shifts in the Baltic region. Climate change in Latvia. Riga: University of Latvia 2007:45–72. Search in Google Scholar

[37] Klavins M., Rodinov V. Long-term changes of river discharge regime in Latvia. Hydrology Research 2008:39(2):133–141. https://doi.org/10.2166/nh.2008.03310.2166/nh.2008.033 Search in Google Scholar

[38] Grinfelde I., et al. The impact of landscape structure of catchment are on lake hydrology. SGEM 2019:19:3.1 https://doi.org/10.5593/sgem2019/3.1/S12.07310.5593/sgem2019/3.1/S12.073 Search in Google Scholar

[39] Latvian Environment Geology and Meteorology (LVGMC). Data base of meteorological information. [Online]. [Accessed 02.02.2021]. Available: https://www.meteo.lv/meteorologija-datumeklesana/?nid=461 Search in Google Scholar

[40] Purmalis O., Kļaviņš L., Arbidans L. Composition and quality of freshwater lake sediments (Balvu and Pērkonu Lakes). Environment. Technology. Resources. Proceedings of the 12th International Scientific and Practical Conference 2019:1:229–235. https://doi.org/10.17770/etr2019vol1.412910.17770/etr2019vol1.4129 Search in Google Scholar

[41] Tuomenvirta H. Reliable estimation of climatic variations in Finland. Finnish Meteorological Institute Contributions. Helsinki: Finnish Meteorological Institute, 2004:43. Search in Google Scholar

[42] Pöyry J., et al. Species traits explain recent range shifts of Finnish butterflies. Global Change Biology 2009:15(3):732–743. https://doi.org/10.1111/j.1365-2486.2008.01789.x10.1111/j.1365-2486.2008.01789.x Search in Google Scholar

[43] Della-Marta P. M., et al. Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research 2007(D15):112. https://doi.org/10.1029/2007JD00851010.1029/2007JD008510 Search in Google Scholar

[44] Rahel F. J., Olden J. D. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 2008:22(3):521–533. https://doi.org/10.1111/j.1523-1739.2008.00950.x10.1111/j.1523-1739.2008.00950.x18577081 Search in Google Scholar

[45] Nature platform in the Netherlands and Belgium [Online]. [Accessed 05.03.2021]. Available: https://waarnemingen.be/species/18820/statistics/ Search in Google Scholar

[46] Klavins M., Rodinovs V., Kokorite I. Chemistry of surface waters in Latvia. Riga: University of Latvia, 2002. Search in Google Scholar

[47] Klavins M., et al. Reconstruction of Anthropogenic Impact Intensity Changes during Last 300 Years in Lake Engure Using Analysis of Sedimentary Records. Environmental and Climate Technologies 2011:7:66–71. https://doi.org/10.2478/v10145-011-0029-810.2478/v10145-011-0029-8 Search in Google Scholar

[48] Chang X., Eigemann F., Hilt S. Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa. Harmful Algae 2012:19:76–84. https://doi.org/10.1016/j.hal.2012.06.00210.1016/j.hal.2012.06.002 Search in Google Scholar

[49] Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology 2004:70(3):169–178. https://doi.org/10.1016/j.aquatox.2004.06.01010.1016/j.aquatox.2004.06.01015550274 Search in Google Scholar

[50] Chen M., et al. Global Landscape of Total Organic Carbon, Nitrogen and Phosphorus in Lake Water. Scientific Reports 2015:5:15043. https://doi.org/10.1038/srep1504310.1038/srep15043460995126477952 Search in Google Scholar

[51] Xu X. F., Thornton P. E., Post W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography 2013:22(6):737–749. https://doi.org/10.1111/geb.1202910.1111/geb.12029 Search in Google Scholar

[52] Sprinģe G., et al. Climate change and its impacts in inland surface waters. Climate change in Latvia. Riga: University of Latvia, 2007:123–143. Search in Google Scholar

[53] Kokorite I., et al. Trends of natural organic matter concentrations in river waters of Latvia. Environmental Monitoring and Assessment 2012:184(8):4999–5008. https://doi.org/10.1007/s10661-011-2315-010.1007/s10661-011-2315-021927788 Search in Google Scholar

[54] Dawson J. J. C., et al. Influence of hydrology and seasonality on DOC exports from three upland catchment. Biogeochemistry 2008:90:93–113. https://doi.org/10.1007/s10533-008-9234-310.1007/s10533-008-9234-3 Search in Google Scholar

[55] de Wit H. A., et al. Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate Environ. Sci. Technol. Lett. 2016:3(12):430–435. https://doi.org/10.1021/acs.estlett.6b0039610.1021/acs.estlett.6b00396 Search in Google Scholar

[56] Steen B., et al. Modelling hot spot areas for the invasive alien plant Elodea nuttallii in the EU. Man. Biol. Inv. 2019:10(1):151–170.10.3391/mbi.2019.10.1.10 Search in Google Scholar

[57] Apsīte E., et al. Long-term changes in hydrological regime of the lakes in Latvia. Hydrology Research 2014:45(3):308–321. https://doi.org/10.2166/nh.2013.43510.2166/nh.2013.435 Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other