INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Ministry of Environmental Protection and Regional Development Republic of Latvia. Latvijas Gaisu Piesārņojošo Vielu Emisiju Esošās Situācijas Izpēte, Emisiju Aprēķinu Veikšana Valsts Gaisa Piesārņojuma Samazināšanas Rīcības Plāna 2020.–2030. Gadam Izstrādei (Existing Latvian air pollutants emissions situation research, emissions calculation reduction for the development of an action plan for 2020-2030). Riga: VARAM, 2018. (in Latvian) Search in Google Scholar

[2] Cabinet of Ministers. Par Latvijas Nacionālo enerģētikas un klimata plānu 2021.–2030. gadam (On the Latvian National Energy and Climate Plan 2021–2030 year). Latvijas Vēstnesis 2020:29. (in Latvian) Search in Google Scholar

[3] Central Statistical Bureau Republic of Latvia. Energy consumption in households. Environment and Energy databases [Online]. [Accessed 8.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__energ_pat/ Search in Google Scholar

[4] Padinger R., et al. Best practise report on decentralized biomass fired CHP plants and status of biomass fired smalland micro scale CHP technologies. IEA Bioenergy, 2019. Search in Google Scholar

[5] Sheykhia M., et al. Performance investigation of a combined heat and power system with internal and external combustion engines. Energy Conversion and Management 2019:185:291–303. https://doi.org/10.1016/j.enconman.2019.01.11610.1016/j.enconman.2019.01.116 Search in Google Scholar

[6] Abuelyamen A., Ben-Mansour R. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modelling. International Journal of Thermal Sciences 2018:132:411–423. https://doi.org/10.1016/j.ijthermalsci.2018.06.02610.1016/j.ijthermalsci.2018.06.026 Search in Google Scholar

[7] Smirnov S. V., et al. A calculation method of a heat rejection system in a lunar power plant consisting of a free-piston Stirling engine (FPSE). Acta Astronautica 2021:180:46–57. https://doi.org/10.1016/j.actaastro.2020.12.00810.1016/j.actaastro.2020.12.008 Search in Google Scholar

[8] MAGA. Wood-gasifying boilers MA [Online]. [Accessed 10.03.2021]. Available: https://magasro.sk/en/wood-andbrickets-boilers-d/wood-gasifying-boiler Search in Google Scholar

[9] Microgen Engine. Microgen’s compact gas fired Heater-Generator [Online]. [Accessed 15.05.2018]. http://stirlingtech.com/wp-content/uploads/2018/05/ThermoGen1.0kW.pdf Search in Google Scholar

[10] Thomas J., et al. Measurement of the in-situ performance of solid biomass boilers. Report number: 30663-P3-2. Cheltenham: KIWA, 2018. Search in Google Scholar

[11] Priedniece V., et al. Biomass Co-firing Laboratory Equipment. Energy Procedia 2017:113:390–395. https://doi.org/10.1016/j.egypro.2017.04.01910.1016/j.egypro.2017.04.019 Search in Google Scholar

[12] WoodCo Energy Ireland. E-Compact Prestige 25P/40P. Installation and Operation Manual. Donaskeigh: WoodCo Energy Ireland, 2017. Search in Google Scholar

[13] Zhu S., et al. Modelling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system. Applied Energy 2018:226:522–533. https://doi.org/10.1016/j.apenergy.2018.05.12210.1016/j.apenergy.2018.05.122 Search in Google Scholar

[14] Priedniece V., et al. Laboratory research of the flue gas condenser – fog unit. Energy Procedia 2018:147:482–487. https://doi.org/10.1016/j.egypro.2018.07.05610.1016/j.egypro.2018.07.056 Search in Google Scholar

[15] Kazulis V., et al. Biomass and natural gas co-firing – evaluation of GHG emissions. Energy Procedia 2018:147:558– 565. https://doi.org/10.1016/j.egypro.2018.07.07110.1016/j.egypro.2018.07.071 Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other