Accesso libero

Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”
INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] IEA. Policy Pathways Brief: Modernising Building Energy Codes 2017. International Energy Agency, 2017.Search in Google Scholar

[2] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010:L153/13.Search in Google Scholar

[3] Lydona G. P., et al. Coupling energy systems with lightweight structures for a net plus energy building. Applied Energy 2017:189:310–326. doi:10.1016/j.apenergy.2016.11.11010.1016/j.apenergy.2016.11.110Open DOISearch in Google Scholar

[4] Passer A., et al. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings 2016:124:153–163. doi:10.1016/j.enbuild.2016.04.00810.1016/j.enbuild.2016.04.008Open DOISearch in Google Scholar

[5] Risholt B., Time B., Hestnes A. G. Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy and Buildings 2013:60:217–224. doi:10.1016/j.enbuild.2012.12.01710.1016/j.enbuild.2012.12.017Open DOISearch in Google Scholar

[6] Wiberg A. H., et al. A net zero emission concept analysis of a single-family house. Energy and Buildings 2014:74:101–110. doi:10.1016/j.enbuild.2014.01.03710.1016/j.enbuild.2014.01.037Open DOISearch in Google Scholar

[7] Attia S., et al. Overview and future challenges of nearly zero energy buildings (NZEB) design in Southern Europe. Energy and Buildings 2017:155:439–458. doi:10.1016/j.enbuild.2017.09.04310.1016/j.enbuild.2017.09.043Open DOISearch in Google Scholar

[8] Chastas P., et al. Embodied Energy and Nearly Zero Energy Buildings: A Review in Residential Buildings. Procedia Environmental Sciences 2107:38:554–561. doi:10.1016/j.proenv.2017.03.12310.1016/j.proenv.2017.03.123Search in Google Scholar

[9] Weißenberger M., Jensch W., Lang W. The convergence of life cycle assessment and nearly zero-energy buildings: The case of Germany. Energy and Buildings 2014:76:551–557. doi:10.1016/j.enbuild.2014.03.02810.1016/j.enbuild.2014.03.028Open DOISearch in Google Scholar

[10] Schimschar S., Blok K., Boermans T., Hermelink A. Germany’s path towards nearly zero-energy buildings – Enabling the greenhouse gas mitigation potential in the building stock. Energy Policy 2011:39(6):3346–3360. doi:10.1016/j.enpol.2011.03.02910.1016/j.enpol.2011.03.029Search in Google Scholar

[11] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011Open DOISearch in Google Scholar

[12] Bot K., et al. Energy performance of buildings with on-site energy generation and storage – An integrated assessment using dynamic simulation. Journal of Building Engineering 2019:24:100769. doi:10.1016/j.jobe.2019.10076910.1016/j.jobe.2019.100769Search in Google Scholar

[13] Kuznik F., et al. A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews 2018:94:576–586. doi:10.1016/j.rser.2018.06.03810.1016/j.rser.2018.06.038Open DOISearch in Google Scholar

[14] Liu J., Chen X., Cao S., Yang H. Overview on hybrid solar photovoltaic-electrical energy storage technologies for power supply to buildings. Energy Conversion and Management 2019:187:103–121. doi:10.1016/j.enconman.2019.02.08010.1016/j.enconman.2019.02.080Open DOISearch in Google Scholar

[15] Silva G. O., Hendrick P. Pumped hydro energy storage in buildings. Applied Energy 2016:179:1242–1250. doi:10.1016/j.apenergy.2016.07.04610.1016/j.apenergy.2016.07.046Open DOISearch in Google Scholar

[16] Pero C., et al. Energy storage key performance indicators for building application. Sustainable Cities and Society 2018:40:54–65. doi:10.1016/j.scs.2018.01.05210.1016/j.scs.2018.01.052Open DOISearch in Google Scholar

[17] Niu J., Tian Z., Lu Y., Zhao H. Flexible dispatch of a building energy system using building thermal storage and battery energy storage. Applied Energy 2019:243:274–287. doi:10.1016/j.apenergy.2019.03.18710.1016/j.apenergy.2019.03.187Open DOISearch in Google Scholar

[18] Krese G., Koželj R., Butala V., Stritih U. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 2018:164:239–253. doi:10.1016/j.enbuild.2017.12.05710.1016/j.enbuild.2017.12.057Open DOISearch in Google Scholar

[19] Li C., Yu H., Song Y., Liu Z. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Conversion and Management 2019:183:791–802. doi:10.1016/j.enconman.2019.01.03610.1016/j.enconman.2019.01.036Open DOISearch in Google Scholar

[20] Dzikevics M., Ansone A., Veidenbergs I. Experimental Investigation of Flow Rate Impact on Thermal Accumulation System with PCM. Energy Procedia 2017:128:386–392. doi:10.1016/j.egypro.2017.09.04310.1016/j.egypro.2017.09.043Open DOISearch in Google Scholar

[21] Schuchardt G. K. Integration of Decentralized Thermal Storages Within District Heating (DH) Networks. Environmental and Climate Technologies 2016:18(1):5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009Open DOISearch in Google Scholar

[22] Kasaeian A., et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy and Buildings 2017:154:96–112. doi:10.1016/j.enbuild.2017.08.03710.1016/j.enbuild.2017.08.037Open DOISearch in Google Scholar

[23] Fateh A., et al. Numerical and experimental investigation of an insulation layer with phase change materials (PCMs). Energy and Buildings 2017:153:231–240. doi:10.1016/j.enbuild.2017.08.00710.1016/j.enbuild.2017.08.007Open DOISearch in Google Scholar

[24] Cascone Y., Capozzoli A., Perino M. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy 2018:211:929–953. doi:10.1016/j.apenergy.2017.11.08110.1016/j.apenergy.2017.11.081Open DOISearch in Google Scholar

[25] Baetens R., Jellea B. P., Gustavsen A. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings 2010:42(9):1361–1368. doi:10.1016/j.enbuild.2010.03.02610.1016/j.enbuild.2010.03.026Open DOISearch in Google Scholar

[26] Sukontasukkul P., et al. Thermal properties of lightweight concrete incorporating high contents of phase change materials. Construction and Building Materials 2019:207:431–439. doi:10.1016/j.conbuildmat.2019.02.15210.1016/j.conbuildmat.2019.02.152Open DOISearch in Google Scholar

[27] Ling T.-C., Poon C.-S. Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials 2013:46:55–62. doi:10.1016/j.conbuildmat.2013.04.03110.1016/j.conbuildmat.2013.04.031Open DOISearch in Google Scholar

[28] Lee K. O., Medina M. A., Suna X., Jin X. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Solar Energy 2018:163:113–121. doi:10.1016/j.solener.2018.01.08610.1016/j.solener.2018.01.086Open DOISearch in Google Scholar

[29] Kośny J., et al. Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations. Solar Energy 2014:108:164–177. doi:10.1016/j.solener.2014.05.00710.1016/j.solener.2014.05.007Open DOISearch in Google Scholar

[30] Boussaba L., Foufa A., Makhlouf S., Lefebvre G., Royon L. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Construction and Building Materials 2018:185:156–165. doi:10.1016/j.conbuildmat.2018.07.09810.1016/j.conbuildmat.2018.07.098Open DOISearch in Google Scholar

[31] Gracia A. Dynamic building envelope with PCM for cooling purposes – Proof of concept. Applied Energy 2019:235:1245–1253. doi:10.1016/j.apenergy.2018.11.06110.1016/j.apenergy.2018.11.061Open DOISearch in Google Scholar

[32] Raja V. A. A., Velraj R. Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews 2010:14(1):2819–2828. doi:10.1016/j.rser.2010.07.00410.1016/j.rser.2010.07.004Open DOISearch in Google Scholar

[33] Osterman E., et al. Review of PCM based cooling technologies for buildings. Energy and Buildings 2012:49:37–49. doi:10.1016/j.enbuild.2012.03.02210.1016/j.enbuild.2012.03.022Open DOISearch in Google Scholar

[34] Al-Maghalseh M., Mahkamov K. Methods of heat transfer intensification in PCM thermal storage systems: Review paper. Renewable and Sustainable Energy Reviews 2018:92:62–94. doi:10.1016/j.rser.2018.04.06410.1016/j.rser.2018.04.064Open DOISearch in Google Scholar

[35] Choi D. H., Lee J., Hong H., Kang Y. T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration 2014:42:112–120. doi:10.1016/j.ijrefrig.2014.02.00410.1016/j.ijrefrig.2014.02.004Open DOISearch in Google Scholar

[36] Fan L., Khodadadi J. M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2011:15(1):24–46. doi:10.1016/j.rser.2010.08.00710.1016/j.rser.2010.08.007Open DOISearch in Google Scholar

[37] Pigueiras E. L., Luque A. Fresnel lens analysis for solar energy applications. Applied Optics 1981:20(17):2941–2945. doi:10.1364/AO.20.00294110.1364/AO.20.00294120333078Open DOISearch in Google Scholar

[38] Xie W. T., Dai Y. J., Wang R. Z., Sumathy K. Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews 2011:15(6):2588–2606. doi:10.1016/j.rser.2011.03.03110.1016/j.rser.2011.03.031Open DOISearch in Google Scholar

[39] Vanaga R., et al. Solar facade module for nearly zero energy building. Energy 2018:157:1025–1034. doi:10.1016/j.energy.2018.04.16710.1016/j.energy.2018.04.167Open DOISearch in Google Scholar

[40] Mols T., et al. Experimental study of small-scale passive solar wall module with phase change material and Fresnel lens. Energy Procedia 2018:147:467–473. doi:10.1016/j.egypro.2018.07.04810.1016/j.egypro.2018.07.048Open DOISearch in Google Scholar

[41] Edmund Optics [Online]. [Accessed 2.05.2019]. Available: https://www.edmundoptics.eu/p/5quot-x-5quot-4quot-focal-length-fresnel-lens/6959Search in Google Scholar

[42] Rubitherm Technologies GmbH [Online]. [Accessed 13.05.2019]. Available: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT21HC_EN_06082018.PDFSearch in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other