1. bookVolume 30 (2022): Edizione 50 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-0532
Prima pubblicazione
03 Mar 2011
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Influential Aspects to Robotic Cell Energetic Efficiency: Overview

Pubblicato online: 23 Aug 2022
Volume & Edizione: Volume 30 (2022) - Edizione 50 (June 2022)
Pagine: 53 - 60
Ricevuto: 29 Apr 2022
Accettato: 29 Jun 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1338-0532
Prima pubblicazione
03 Mar 2011
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

[1] MOURTZIS, D., DOUKAS, M., & BERNIDAKI, D. 2014. Simulation in manufacturing: Review and challenges. Procedia CIRP, 25(C), 213–229. https://doi.org/10.1016/j.procir.2014.10.032 Search in Google Scholar

[2] TIPARY, B., & ERDŐS, G. 2021. Generic development methodology for flexible robotic pick-and-place workcells based on Digital Twin. Robotics and Computer-Integrated Manufacturing, 71. https://doi.org/10.1016/j.rcim.2021.102140 Search in Google Scholar

[3] CHONG, J. W. S., ONG, S. K., NEE, A. Y. C., & YOUCEF-YOUMI, K. 2009. Robot programming using augmented reality: An interactive method for planning collision-free paths. Robotics and Computer-Integrated Manufacturing, 25(3), 689–701. https://doi.org/10.1016/j.rcim.2008.05.002 Search in Google Scholar

[4] ERDŐS, G., PANITI, I., & TIPARY, B. 2020. Transformation of robotic workcells to digital twins. CIRP Annals, 69(1), 149–152. https://doi.org/10.1016/j.cirp.2020.03.003 Search in Google Scholar

[5] HOLZ, D., TOPALIDOU-KYNIAZOPOULOU, A., STUCKLER, J., & BEHNKE, S. 2015. Real-time object detection, localization and verification for fast robotic depalletizing. IEEE International Conference on Intelligent Robots and Systems, 2015-Decem, 1459–1466. https://doi.org/10.1109/IROS.2015.7353560 Search in Google Scholar

[6] YIN, S., JI, W., & WANG, L. 2019. A machine learning based energy efficient trajectory planning approach for industrial robots. Procedia CIRP, 81, 429–434. https://doi.org/10.1016/j.procir.2019.03.074 Search in Google Scholar

[7] CHEMNITZ, M., SCHRECK, G., & KRÜGER, J. 2011. Analyzing energy consumption of industrial robots. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2–5. https://doi.org/10.1109/ETFA.2011.6059221 Search in Google Scholar

[8] NGAMPAK, N., & PHRUKSAPHANRAT, B. 2011. Cellular manufacturing layout design and selection: A case study of electronic manufacturing service plant. IMECS 2011 - International MultiConference of Engineers and Computer Scientists 2011, 2, 1182–1187. Search in Google Scholar

[9] LIM, Z. Y., PONNAMBALAM, S. G., & IZUI, K. 2016. Nature inspired algorithms to optimize robot workcell layouts. Applied Soft Computing Journal, 49, 570–589. https://doi.org/10.1016/j.asoc.2016.08.048 Search in Google Scholar

[10] TING, Y., DINGHUA, Z., BING, C., & SHAN, L. 2008. Research on plant layout and production line running simulation in digital factory environment. Proceedings - 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, 2, 588–593. https://doi.org/10.1109/PACIIA.2008.159 Search in Google Scholar

[11] LÄMMLE, A., SEEBER, C., & KOGAN, E. 2020. Automatic simulation model implementation of robotic production cells in a 3D manufacturing simulation environment. Procedia CIRP, 91, 336–341. https://doi.org/10.1016/j.procir.2020.02.185 Search in Google Scholar

[12] KOOPMANS, T. C., & BECKMANN, M. 1957. Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53. https://doi.org/10.2307/1907742 Search in Google Scholar

[13] DREZNER, Z., & NOF, S. Y. 1984. On optimizing bin picking and insertion plans for assembly robots. IIE Transactions (Institute of Industrial Engineers), 16(3), 262–270. https://doi.org/10.1080/07408178408974693 Search in Google Scholar

[14] TAY, M. L., & NGOI, B. K. A. 1996. Optimising robot workcell layout. International Journal of Advanced Manufacturing Technology, 12(5), 377–385. https://doi.org/10.1007/BF01179814 Search in Google Scholar

[15] CHENG, F. S. (2000). Methodology for developing robotic workcell simulation models. Winter Simulation Conference Proceedings, 2, 1265–1271. https://doi.org/10.1109/wsc.2000.899095 Search in Google Scholar

[16] SIM, S. K., TAY, M. L., & KHAIRYANTO, A. 2005. Optimisation of a robotic workcell layout using genetic algorithms. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, 2 B, 921–930. https://doi.org/10.1115/detc2005-85518 Search in Google Scholar

[17] ISLIER, A. A. 1998. A genetic algorithm approach for multiple criteria facility layout design. International Journal of Production Research, 36(6), 1549–1569. https://doi.org/10.1080/002075498193165 Search in Google Scholar

[18] DRIRA, A., PIERREVAL, H., & HAJRI-GABOUJ, S. 2007. Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001 Search in Google Scholar

[19] ZHANG, E.-D., QI, L.-L., & MURPHY, S. 2010. ( 12 ) Patent Application Publication ( 10 ) Pub. No.: US 2010 / 0035098 A1 Patent Application Publication, 1(19), 1–5. Retrieved fromhttps://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1.pdf Search in Google Scholar

[20] RASSÕLKIN, A., HÕIMOJA, H., & TEEMETS, R. 2011. Energy saving possibilities in the industrial robot IRB 1600 control. 2011 7th International Conference-Workshop Compatibility and Power Electronics, CPE 2011 - Conference Proceedings, (1), 226–229. https://doi.org/10.1109/CPE.2011.5942236 Search in Google Scholar

[21] CARABIN, G., WEHRLE, E., & VIDONI, R. 2017. A review on energy-saving optimization methods for robotic and automatic systems. Robotics, 6(4). https://doi.org/10.3390/robotics6040039 Search in Google Scholar

[22] GADALETA, M., BERSELLI, G., PELLICCIARI, M., & SPOSATO, M. 2017. A Simulation Tool for Computing Energy Optimal Motion Parameters of Industrial Robots. Procedia Manufacturing, 11(June), 319–328. https://doi.org/10.1016/j.promfg.2017.07.114 Search in Google Scholar

[23] BUKATA, L., SUCHA, P., HANZALEK, Z., & BURGET, P. 2017. Energy Optimization of Robotic Cells. IEEE Transactions on Industrial Informatics, 13(1), 92–102. https://doi.org/10.1109/TII.2016.2626472 Search in Google Scholar

[24] ROßMANN, J., GUIFFO KAIGOM, E., ATORF, L., RAST, M., GRINSHPUN, G., & SCHLETTE, C. 2014. Mental Models for Intelligent Systems: eRobotics Enables New Approaches to Simulation-Based AI. KI - Kunstliche Intelligenz, 28(2), 101–110. https://doi.org/10.1007/s13218-014-0298-z Search in Google Scholar

[25] LI, Y., & BONE, G. M. 2001. Are parallel manipulators more energy efficient? Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA, 2001-Janua(January 2001), 41–46. https://doi.org/10.1109/CIRA.2001.1013170 Search in Google Scholar

[26] LEE, G., SUL, S. K., & KIM, J. 2015. Energy-saving method of parallel mechanism by redundant actuation. International Journal of Precision Engineering and Manufacturing - Green Technology, 2(4), 345–351. https://doi.org/10.1007/s40684-015-0042-7 Search in Google Scholar

[27] RUIZ, A. G., FONTES, J. V. C., & DA SILVA, M. M. 2015. The influence of kinematic redundancies in the energy efficiency of planar parallel manipulators. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 4A-2015(November). https://doi.org/10.1115/IMECE2015-50278 Search in Google Scholar

[28] MEIKE, D., & RIBICKIS, L. 2011. Energy efficient use of robotics in the automobile industry. IEEE 15th International Conference on Advanced Robotics: New Boundaries for Robotics, ICAR 2011, 507–511. https://doi.org/10.1109/ICAR.2011.6088567 Search in Google Scholar

[29] KAPOOR, R., & PARVEEN, C. M. 2013. Comparative study on various KERS. Lecture Notes in Engineering and Computer Science, 3 LNECS, 1969–1973. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo