INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] C. LIU, A. M. OMER and X. KUN OUYANG. 2018. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int. J. Biol. Macromol., Vol. 106, pp. 823–833. doi: 10.1016/j.ijbiomac.2017.08.084.10.1016/j.ijbiomac.2017.08.08428834705 Search in Google Scholar

[2] N. R. J. HYNES et al. 2020. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. J. Clean. Prod., Vol. 272, p. 122636. doi: 10.1016/j.jclepro.2020.122636.10.1016/j.jclepro.2020.122636 Search in Google Scholar

[3] Y. ZHOU, J. LU, Y. ZHOU and Y. LIU. 2019. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut., Vol. 252, pp. 352–365. doi: 10.1016/j.envpol.2019.05.072.10.1016/j.envpol.2019.05.07231158664 Search in Google Scholar

[4] M. A. HASSAAN and A. EL NEMR. 2017. Health and Environmental Impacts of Dyes : Mini Review. Am. J. Environ. Sci. Eng., 1(3), pp. 64–67. doi: 10.11648/j.ajese.20170103.11. Search in Google Scholar

[5] A. ESFANDIARI, T. KAGHAZCHI and M. SOLEIMANI. 2012. Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. J. Taiwan Inst. Chem. Eng., 43(4), pp. 631–637. doi: 10.1016/j.jtice.2012.02.002.10.1016/j.jtice.2012.02.002 Search in Google Scholar

[6] A. ELSAGH, O. MORADI, A. FAKHRI, F. NAJAFI, R. ALIZADEH and V. HADDADI. 2017. Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces. Arab. J. Chem., Vol. 10, pp. S2862–S2869. doi: 10.1016/j.arabjc.2013.11.013.10.1016/j.arabjc.2013.11.013 Search in Google Scholar

[7] M. WAWRZKIEWICZ, M. WIŚNIEWSKA, V. M. GUN’KO and V. I. ZARKO. 2015. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technol., Vol. 278, pp. 306–315. doi: 10.1016/j.powtec.2015.03.035.10.1016/j.powtec.2015.03.035 Search in Google Scholar

[8] H. LAKSACI, A. KHELIFI, M. TRARI and A. ADDOUN. 2017. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod., Vol. 147, pp. 254–262. doi: 10.1016/j.jclepro.2017.01.102.10.1016/j.jclepro.2017.01.102 Search in Google Scholar

[9] U. A. EDET and A. O. IFELEBUEGU. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6), doi: 10.3390/PR8060665.10.3390/pr8060665 Search in Google Scholar

[10] C. MUTHUKUMARAN, V. M. SIVAKUMAR and M. THIRUMARIMURUGAN. 2016. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng., Vol. 63, pp. 354–362. doi: 10.1016/j.jtice.2016.03.034.10.1016/j.jtice.2016.03.034 Search in Google Scholar

[11] Y. H. LIN and J. Y. LEU. 2008. Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem. Eng. J., 39(3), pp. 457–467. doi: 10.1016/j.bej.2007.10.015.10.1016/j.bej.2007.10.015 Search in Google Scholar

[12] W. PLAZINSKI, W. RUDZINSKI and A. PLAZINSKA. 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci., 152(1–2) pp. 2–13. doi: 10.1016/j.cis.2009.07.009.10.1016/j.cis.2009.07.00919735907 Search in Google Scholar

[13] N. ZIAEIFAR, M. KHOSRAVI, M. A. BEHNAJADY, M. R. SOHRABI and N. MODIRSHAHLA. 2015. Optimizing adsorption of Cr(VI) from aqueous solutions by NiO nanoparticles using Taguchi and response surface methods. Water Sci. Technol., 72(5), pp. 721–729. doi: 10.2166/wst.2015.253.10.2166/wst.2015.25326287830 Search in Google Scholar

[14] R. A. CANALES-FLORES and F. PRIETO-GARCÍA. 2020. Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diam. Relat. Mater., Vol. 109, No. August, p. 108027. doi: 10.1016/j.diamond.2020.108027.10.1016/j.diamond.2020.108027 Search in Google Scholar

[15] C. SILVEIRA, Q. L. SHIMABUKU-BIADOLA, M. F. SILVA, M. F. VIEIRA and R. BERGAMASCO. 2020. Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environ. Sci. Pollut. Res., 27(6), pp. 6088–6102. doi: 10.1007/s11356-019-07329-7.10.1007/s11356-019-07329-731865561 Search in Google Scholar

eISSN:
1338-0532
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other