INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] BAKSA, T., SCHORNIK, V., ADAMEK, P., ZETEK, M. 2016. Machining of inconel 718 using uncoated cutting tools with different cutting EDGE quality. Ann. DAAAM Proc. Int. DAAAM Symp., 27(1), pp. 441–446. doi: 10.2507/27th.daaam.proceedings.06510.2507/27th.daaam.proceedings.065Search in Google Scholar

[2] KURIYAGAWA, T., SYOJI, K., OHSHITA, H. 2003. Grinding temperature within contact arc between wheel and workpiece in high-efficiency grinding of ultrahard cutting tool materials. J. Mater. Process. Technol., 136(1–3), pp. 39–47. doi: 10.1016/S0924-0136(02)00842-7.10.1016/S0924-0136(02)00842-7Search in Google Scholar

[3] LIU, X., CHEN, Z., JI, W., WANG, L. 2019. Iteration-based error compensation for a worn grinding wheel in solid cutting tool flute grinding. Procedia Manuf., 34, pp. 161–167. doi: 10.1016/j.promfg.2019.06.134.10.1016/j.promfg.2019.06.134Search in Google Scholar

[4] KARPUSCHEWSKI, B., JANDECKA, K., MOUREK, D. 2011. Automatic search for wheel position in flute grinding of cutting tools. CIRP Ann. - Manuf. Technol., 60(1), pp. 347–350. doi: 10.1016/j.cirp.2011.03.113.10.1016/j.cirp.2011.03.113Search in Google Scholar

[5] UHLMANN, E., HÜBERT, C. 2011. Tool grinding of end mill cutting tools made from high performance ceramics and cemented carbides. CIRP Ann. - Manuf. Technol., 60(1), pp. 359–362. doi: 10.1016/j.cirp.2011.03.106.10.1016/j.cirp.2011.03.106Search in Google Scholar

[6] GAO, P. et al. 2017. Cutting edge damage in grinding of cemented carbides micro end mills. Ceram. Int., 43(14), pp. 11331–11338. doi: 10.1016/j.ceramint.2017.05.336.10.1016/j.ceramint.2017.05.336Search in Google Scholar

[7] DENKENA, B., KRÖDEL, A., THEUER, M. 2020. Novel continuous generating grinding process for the production of cutting tools. CIRP J. Manuf. Sci. Technol., 28, pp. 1–7. doi: 10.1016/j.cirpj.2020.02.001.10.1016/j.cirpj.2020.02.001Search in Google Scholar

[8] BURANSKÝ, I., BRAČÍK, M., ŠIMNA, V. 2018. Influence of End Mill Helix Angle on Surface Quality of Aluminium Thin-Walled Parts. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol., 26(42), pp. 177–188. doi: 10.2478/rput-2018-0022.10.2478/rput-2018-0022Search in Google Scholar

[9] KUNDRÁK, J., FEDOROVICH, V., MARKOPOULOS, A. P., PYZHOV, I., KRYUKOVA. N. 2016. Diamond grinding wheels production study with the use of the finite element method. J. Adv. Res., 7(6), pp. 1057–1064. doi: 10.1016/j.jare.2016.08.003.10.1016/j.jare.2016.08.003Search in Google Scholar

[10] MAO, C., ZHOU, Z. X., REN, Y. H., ZHANG. B. 2010. Analysis and FEM simulation of temperature field in wet surface grinding. Mater. Manuf. Process., 25(6), pp. 399–406, doi: 10.1080/10426910903124811.10.1080/10426910903124811Search in Google Scholar

[11] ROWE, W. B. 2014. Wheel Contact and Wear Effects. Princ. Mod. Grind. Technol., pp. 83–99. doi: 10.1016/b978-0-323-24271-4.00005-1.10.1016/B978-0-323-24271-4.00005-1Search in Google Scholar

[12] ROWE, W. B. 2009. Wheel Contact Effects. Princ. Mod. Grind. Technol., pp. 79–93. doi: 10.1016/b978-0-8155-2018-4.50011-2.10.1016/B978-0-8155-2018-4.50011-2Search in Google Scholar

[13] LI, W., WANG, Y., FAN, S., XU, J. 2007. Wear of diamond grinding wheels and material removal rate of silicon nitrides under different machining conditions. Mater. Lett., 61(1), pp. 54–58. doi: 10.1016/j.matlet.2006.04.004.10.1016/j.matlet.2006.04.004Search in Google Scholar

[14] HORVATH, M., KUNDRAK, J., MAMALIS, A. G., GYANI, K. 2002. On the precision grinding of advanced ceramics. Int. J. Adv. Manuf. Technol., 20(4), pp. 255–258. doi: 10.1007/s001700200150.10.1007/s001700200150Search in Google Scholar

[15] PÄTOPRSTÝ, B., POKORNÝ, P., VOZÁR, M., VOPÁT, T., BURANSKÝ, I. 2019. The influence of grinding process and drag finishing on the milling tools macro geometry. Ann. DAAAM Proc. Int. DAAAM Symp., 30(1), pp. 1008–1013. doi: 10.2507/30th.daaam.proceedings.140.10.2507/30th.daaam.proceedings.140Search in Google Scholar

[16] PETERKA, J., HRBÁL, J., BURANSKÝ, I., VOZÁR, M. 2020. Design and manufacturing of cutting tools for milling. MM Sci. J., Vol. 2020, No. March, pp. 3818–3821. doi: 10.17973/MMSJ.2020_03_2019129.10.17973/MMSJ.2020_03_2019129Search in Google Scholar

[17] BASERI, H., REZAEI, S. M., RAHIMI, A., SAADAT, M. 2008. Analysis of the disc dressing effects on grinding performance - Part 1: Simulation of the disc dressed wheel surface. Mach. Sci. Technol., 12(2), pp. 183–196. doi: 10.1080/10910340802067395.10.1080/10910340802067395Search in Google Scholar

[18] BASERI, H. 2010. Workpiece surface roughness prediction in grinding process for different disc dressing conditions. ICMET 2010 - 2010 Int. Conf. Mech. Electr. Technol. Proc., No. ICMET, pp. 209–212. doi: 10.1109/ICMET.2010.5598352.10.1109/ICMET.2010.5598352Search in Google Scholar

eISSN:
1338-0532
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other