INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. KOVÁČ, M., BURANSKÝ, I. 2013. Experimental determination of milling model for thin-walled parts. ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering, Tome VI, pp. 123-126.Search in Google Scholar

2. MASMALI, M., MATHEW, P. 2017. An analytical approach for machining thin-walled workpieces. Procedia CIRP, 58, pp. 187-192.10.1016/j.procir.2017.03.186Search in Google Scholar

3. AIJUN, T., ZHANQIANG L., MA HAILONG. 2008. Modelling and Simulation of Big Deformations of Thin walled Plate in End Milling Process. [Online]. [cit. 2013-02-25]. http://www.sciencedirect.com/10.1109/ICAL.2007.4338976Search in Google Scholar

4. COMAK, A., BUDAK, E. 2017. Modelling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability. PRECISION ENGINEERING, vol. 47, pp. 459-468.10.1016/j.precisioneng.2016.09.021Search in Google Scholar

5. ALTINTAS, Y., BUDAK, E. 1995. Analytical prediction of stability lobes in milling. Ann CIRP, 44, pp. 357-362.10.1016/S0007-8506(07)62342-7Search in Google Scholar

6. ALTINTAS, Y., SHAMOTO, E., LEE, P., BUDAK, E. 1999. Analytical prediction of stability lobes in ball end milling. Trans ASME J Manuf. Sci. Eng, 121, pp. 586-592.10.1115/1.2833064Search in Google Scholar

7. BURANSKÝ, I. 2011. Thin-Walled Parts Machining. 1st Edition. - Köthen: Hochschule Anhalt, 84 p. ISBN 978-3-86011-043-0.Search in Google Scholar

8. BARANEK, I., BURANSKÝ, I., PETERKA, J. 2013. Influence of material removal way on thin-walled part quality by milling. MM Science Journal, pp. 414-417.10.17973/MMSJ.2013_06_201306Search in Google Scholar

9. ALTINTAS, Y., ENGIN, S., BUDAK E., 1999. Analytical Stability Prediction and Design of Variable Pitch Cutters. J. Manuf. Sci. Eng,121(2), p. 6, pp. 173-178.10.1115/1.2831201Search in Google Scholar

10. SANDVIKCOROMANT, 2018. Silent Tools for milling, Sandvik Coromant. [Online]. [cit. 2018-02-10]. https://www.sandvik.coromant.com/en-b/products/silent_tools_millingSearch in Google Scholar

11. SHAMOTO, E., SAITO, A. 2016. A novel deep groove machining method utilizing variable-pitch end mill with feed-directional thin support. Precision Engineering, vol. 43, pp. 277-284.10.1016/j.precisioneng.2015.08.006Search in Google Scholar

12. HELICAL SOLUTIONS LLC. Thin wall milling, Helical Solutions LLC, 2018. [Online]. [cit. 2018-1-12]. http://www.helicaltool.com/secure/Content/Documents/Tech_ThinWallMilling.pdfSearch in Google Scholar

13. MATSUBARA, A., TANIYAMA, Y., WANG, J., KONO, D. 2017. Design of a support system with a pivot mechanism for suppressing vibrations in thin-wall milling, CIRP Annals, 1(66), pp. 381-384.10.1016/j.cirp.2017.04.055Search in Google Scholar

14. SUZUKI, N., ISHIGURO, R., KOJIMA, T. 2016. Design of irregular pitch end mills to attain robust suppression of regenerative chatter. CIRP Annals, 65(1), pp. 129-132.10.1016/j.cirp.2016.04.041Search in Google Scholar

15. YUSOFF, A. R. 2016. Identifying bifurcation behavior during machining process for an irregular milling tool geometry. Measurement, Volume 93, pp. 57-66.10.1016/j.measurement.2016.07.001Search in Google Scholar

eISSN:
1338-0532
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other