1. bookVolume 8 (2021): Edizione 14 (October 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2182-1976
Prima pubblicazione
16 Apr 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

An alternative algorithm for the n–Queens puzzle

Pubblicato online: 22 Oct 2021
Volume & Edizione: Volume 8 (2021) - Edizione 14 (October 2021)
Pagine: 39 - 73
Dettagli della rivista
License
Formato
Rivista
eISSN
2182-1976
Prima pubblicazione
16 Apr 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

[GJN17] Ian P. Gent, Christopher Je erson and Peter Nightingale. “Complexity of n– Queens Completion.” Journal of Artificial Intelligence Research Vol. 59 (2017): 815–848 DOI: https://doi.org/10.1613/jair.551210.1613/jair.5512 Search in Google Scholar

[CMA21] Clay Mathematis Institute. “P vs NP Problem.” Accessed 21 September, 2021. https://www.claymath.org/millennium-problems/p-vs-np-problem Search in Google Scholar

[Coo71] Stephen A. Cook. “The complexity of theorem proving procedures.” Proceedings Third Annual ACM Symposium on the Theory of Computing, 1971. Search in Google Scholar

[Sch15] Fred Schuh. The Master book of mathematical recreations. Translated by F. Göbel. New York: Dover Publications, 1968: 34–346 Search in Google Scholar

[BSR08] Roman Barták, Miguel A. Salido and Francesca Rossi. “Constraint Satisfaction Techniques in Planning and Scheduling.” Journal of Intelligent Manufacturing 21, (2010): 5–15 DOI: https://doi.org/10.1007/s10845-008-0203-4.10.1007/s10845-008-0203-4 Search in Google Scholar

[BSR10] Roman Barták, Miguel A. Salido and Francesca Rossi. “New Trends in Constraint Satisfaction, Planning, and Scheduling: A Survey.” The Knowledge Engineering Review 25 (3) (2010): 249–279 DOI: https://doi.org/10.1017/S026988891000020210.1017/S0269888910000202 Search in Google Scholar

[ACP68] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 5: Mathematical Preliminaries Redux; Introduction to Backtracking; Dancing Links. Addison-Wesley Professional, 2019. Search in Google Scholar

[ACJ18] Nélia Amado, Susana Carreira and Keith Jones. Broadening the Scope of Research on Mathematical Problem Solving. Springer, 2018: 551–55210.1007/978-3-319-99861-9 Search in Google Scholar

[PrE17] Thomas B. Preußer and Mathias R. Engelhardt. “Putting Queens in Carry Chains, Noź27.” Journal of Signal Processing Systems, 88(2). (2017):185-–201. DOI: https://doi.org/10.1007/s11265-016-1176-810.1007/s11265-016-1176-8 Search in Google Scholar

[AY89] B. Abramson and M. Yung. “‘Divide and conquer under global constraints: a solution to the n–queens probelm,” Journal of Parallel and Distributed Computing 6(3), (1989): 649–66210.1016/0743-7315(89)90011-7 Search in Google Scholar

[BS09] J. Bell and B. Stevens. “A survey of known results and research areas for n–queens.” Discrete Mathematics, 309 (2009): 1-–31. DOI: http://dx.doi.org/10.1016/j.disc.2007.12.04310.1016/j.disc.2007.12.043 Search in Google Scholar

[BD75] A. A. Bruen and R. Dixon. “The n-queen problem.” Discrete Mathematics, 12, (1975): 393—395. DOI: https://doi.org/10.1016/0012-365X(75)90079-510.1016/0012-365X(75)90079-5 Search in Google Scholar

[BM02] A. P. Burger and C. M. Mynhardt. “An upper bound for the minimum number of queens covering the n×n chessboard.” Discrete Applied Mathematics 121, (2002): 51—60. DOI: https://doi.org/10.1016/S0166-218X(01)00244-X10.1016/S0166-218X(01)00244-X Search in Google Scholar

[Eng07] M. R. Engelhardt. “A group-based search for solutions of the n-queens problem.” Discrete Mathematics 307, (2007): 2535—2551. DOI: https://doi.org/10.1016/j.disc.2007.01.00710.1016/j.disc.2007.01.007 Search in Google Scholar

[ET92] C. Erbas, S. Sarkeshik and M. M. Tanik, “Di erent perspectives of the N– queens problem.” Proceedings ACM Computer Science Conference (1992): 99-–108. DOI: https:/doi.org/10.1145/131214.131227 Search in Google Scholar

[Ber91] Bo Bernhardsson. “Explicit Solutions to the N–Queens Problem for All N.” ACM SIGART Bulletin 2 (2) (1991). DOI: https://doi.org/10.1145/122319.12232210.1145/122319.122322 Search in Google Scholar

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. ISBN 978-0-7167-1045-5 Search in Google Scholar

[CMA21] Clay Mathematis Institute. “The 8-Queens Puzzle.” Accessed 21 September, 2021. https://www.claymath.org/events/news/8-queens-puzzle Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo