Accesso libero

Acute myelogenous leukemia – current recommendations and approaches in molecular-genetic assessment

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. VAKITI A., MEWAWALLA P. Acute Myeloid Leukemia. In: StatPearls, StatPearls Publishing, Treasure Island (FL), 2021.Search in Google Scholar

2. POGOSOVA-AGADJANYAN E., MOSELEY A., OTHUS M., APPELBAUM F. Chauncey T., Chen I. et al. AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: a SWOG report. Biomark Res. 2020, 8:29.10.1186/s40364-020-00208-1742515932817791Search in Google Scholar

3. STRIMBU K., TAVEL J. What are biomarkers? Curr. Opin. HIV AIDS. 2010;5(6):463–466.10.1097/COH.0b013e32833ed177Search in Google Scholar

4. NAIR M., SANDHU S., SHARMA A., Cancer molecular markers: A guide to cancer detection and management. Seminars in Cancer Biology. 2018;52(1):39–55.10.1016/j.semcancer.2018.02.00229428478Search in Google Scholar

5. VERMA M. Personalized medicine and cancer. J Pers Med. 2012;2(1):1–14.10.3390/jpm2010001425136325562699Search in Google Scholar

6. LADINES-CASTRO W., BARRAGAN-IBANEZ G., LUNA-PEREZ M., SANTOYO-SANCHEZ A., COLLAZO-JALLOMA J., MENDOZA-GARCIA E. et al. Morphology of leukaemias. Rev Med Hosp Gen Mex. 2016;79(2):107–113.10.1016/j.hgmx.2015.06.007Search in Google Scholar

7. SCHIFFER C., STONE R. Morphologic Classification and Clinical and Laboratory Correlates. In: Holland-Frei Cancer Medicine. 6th edition. Hamilton (ON): BC Decker; 2003.Search in Google Scholar

8. VARDIMAN J., HARRIS N., BRUNNING R. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 100(7): 2292–2302.10.1182/blood-2002-04-119912239137Search in Google Scholar

9. BLUM W., BLOOMFIELD C. Acute Myeloid Leukemia. In: Harrison’s Principles of Internal Medicine. McGraw-Hill, New York, 2018:739-748.Search in Google Scholar

10. ARBER D., ORAZI A., HASSERJIAN R., THIELE J., BOROWITZ M., LE BEAU M. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20):2391–2405.10.1182/blood-2016-03-64354427069254Search in Google Scholar

11. HEROLD T., ROTHENBERG-THURLEY M., GRUNWALD V., JANKE H., GOERLICH D., SAUERLAND M. et al. Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia. 2020;34:3161–3172.10.1038/s41375-020-0806-0768597532231256Search in Google Scholar

12. DOHNER H., ESTEY E., GRIMWADE D., AMADORI S., APPELBAUM F., BUCHNER T. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.10.1182/blood-2016-08-733196529196527895058Search in Google Scholar

13. YOHE S. Molecular Genetic Markers in Acute Myeloid Leukemia. J Clin Med. 2015;4(3):460-78.10.3390/jcm4030460447013926239249Search in Google Scholar

14. CONNEELY S., STEVENS A. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep. 2021;23(2):16.10.1007/s11912-020-01009-3780655233439382Search in Google Scholar

15. ELGARTEN C,. APLENC, R. Pediatric acute myeloid leukemia: updates on biology, risk stratification, and therapy. Current Opinion in Pediatrics. 2020;32(1):57–6610.1097/MOP.000000000000085531815781Search in Google Scholar

16. ABEL H., DUNCAVAGE E. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206(12):432–440.10.1016/j.cancergen.2013.11.002444182224405614Search in Google Scholar

17. WEINBERG O., SOHANI A., BHARGAVA P., NARDI V. Diagnostic work-up of acute myeloid leukemia. Am J Hematol. 2017;92(3):317–32110.1002/ajh.2464828066929Search in Google Scholar

18. NAIR M., SANDHU S., SHARMA A. Prognostic and Predictive Biomarkers in Cancer. Curr Cancer Drug Targets. 2014;14(5):477–504.10.2174/156800961466614050611111824807144Search in Google Scholar

19. IBANEZ M., SUCH E., ONECHA E., GOMEZ-SEGUI I., LIQUIORI A., SELLES J. et al. Analysis of SNP Array Abnormalities in Patients with DE NOVO Acute Myeloid Leukemia with Normal Karyotype. Sci Rep. 2020;10(1):5904.10.1038/s41598-020-61589-9712515032246042Search in Google Scholar

20. BERRY N., SCOTT R., ROWLINGS P., ENJETI A. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol. 2019;142:58–67.10.1016/j.critrevonc.2019.07.01631377433Search in Google Scholar

21. LEISCH M., JANSKO B., ZABORANSKY N., GREIL R., PLEYER L. Next Generation Sequencing in AML-On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation? Cancers (Basel). 2019;11(2):252.10.3390/cancers11020252640695630795628Search in Google Scholar

22. JAISWAL S., NATARAJAN P., SILVER A., GIBSON C., BICK A., SHVARTZ E. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017;377(2):111–121.10.1056/NEJMoa1701719671750928636844Search in Google Scholar

23. PAPAEMMANUIL E., GERSTUNG M., BULLIGER L., GAIDZIK V., PASCHKA P., ROBERTS N. et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209–222110.1056/NEJMoa1516192497999527276561Search in Google Scholar

24. WOOLBRIGHT W., WONG V., SEVERSON E., KUO D. The Application of Next-generation Sequencing Tumor Molecular Profiling in the Diagnosis and Management of a Case of Acute Myelogenous Leukemia With MLL-PTD in a Pediatric Heart Transplant Recipient. Journal of Pediatric Hematology/Oncology. 2021;43(2):246–e24910.1097/MPH.000000000000177232134843Search in Google Scholar

25. HAN E., YOO J., CHAE H., LEE S., KIM D., KIM K. et al. Detection of BRCA1/2 large genomic rearrangement including BRCA1 promoter-region deletions using next-generation sequencing. Clin Chim Acta. 2020;505:49-54.10.1016/j.cca.2020.02.02332092317Search in Google Scholar

26. LEVINE R., VALK P. Next-generation sequencing in the diagnosis and minimal residual disease assessment of acute myeloid leukemia. Haematologica. 2019;104(5):868-871.10.3324/haematol.2018.205955651890030923100Search in Google Scholar

27. ARTECHE-LOPEZ A., ÁVILLA-FERNANDEZ A., ROMERO R., RIVEIRO-ÁLVAREZ R., LOPEZ-MARTINEZ A., GIMENEZ-PARDO A. et al. Sanger sequencing is no longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes. Sci Rep. 2021; 11:5697.10.1038/s41598-021-85182-w795254233707547Search in Google Scholar

28. HEATHER J., CHAIN B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1–8.10.1016/j.ygeno.2015.11.003472778726554401Search in Google Scholar

29. MENDOZA H., PODOLTSEV N., SIDDON A. Laboratory evaluation and prognostication among adults and children with CEBPA-mutant acute myeloid leukemia. Int J Lab Hematol. 2021;43 Suppl 1:86–95.10.1111/ijlh.1351734288448Search in Google Scholar

30. O’BRIEN G., ZYLA J., MANOLA K., PAGONI M., POLANSKA J., BADIE C. Identification of two novel mutations in human acute myeloid leukemia cases. Leuk Lymphoma. 2021;62(2):454–461.10.1080/10428194.2020.183266433161783Search in Google Scholar

31. TOKGUN P., ALAY M., ATLI TEKIN S., GULER N., TOKGUN O., DEMIRAY A. et al. Two Novel CEBPA Mutations in a Turkish Patient with Acute Myeloid Leukemia. Balkan J Med Genet. 2021;23(2):99–102.10.2478/bjmg-2020-0024800956633816079Search in Google Scholar

32. PRAY L. The Biotechnology Revolution: PCR and the Use of Reverse Transcriptase to Clone Expressed Genes. Nature Education. 2008;1(1):94Search in Google Scholar

33. GUO Y., SUN H., ZHANG D., ZHAO Y., SHI M., YANG M. et al. Development of a highly sensitive method for detection of FLT3D835Y. Biomark Res. 2020;8:30.10.1186/s40364-020-00210-7742499832817792Search in Google Scholar

34. GORNIAK P., EJDUK A., BORG K., MAKUSH-LASIKA H., NOWAK G., LESH-MARANDA E. et al. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients. Eur J Haematol. 2016; 96:181–187.10.1111/ejh.1256625891904Search in Google Scholar

35. KUMAR D., MEHTA A., PANIGRAHI M., NATH S., SAIKIA K. NPM1 Mutation Analysis in Acute Myeloid Leukemia: Comparison of Three Techniques - Sanger Sequencing, Pyrosequencing, and Real-Time Polymerase Chain Reaction. Turk J Haematol. 2018;35(1):49–53.10.4274/tjh.2017.0095584377429129825Search in Google Scholar

36. OMMEN H. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol. 2016;7(1):3–16.10.1177/2040620715614529471388726834951Search in Google Scholar

37. HUIJSMANS C., POODT J., DAMEN J., VAN DER LINDEN J., SAVELKOUL P., PRUJIT J. et al. (2012) Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease. PLoS ONE. 2012;7(7):e38362.10.1371/journal.pone.0038362338808222768290Search in Google Scholar

38. KSIAZEK T., CZOGALA M., KACZOWKA P., SADOWSKA B., PAWINSKA-WASIKOWSKA K., BIK-MULTANOWSKI M. et al. High Frequency of Fusion Gene Transcript Resulting From t(10;11)(p12;q23) Translocation in Pediatric Acute Myeloid Leukemia in Poland. Front Pediatr. 2020;8:278.10.3389/fped.2020.00278736638432754558Search in Google Scholar

39. GARIBYAN L., AVASHIA N. Polymerase chain reaction. J Invest Dermatol. 2013;133(3):1–4.10.1038/jid.2013.1410230823399825Search in Google Scholar

40. HOMIG-HOLZEL C., SAVOLA S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21(4):189–206.10.1097/PDM.0b013e318259551623111197Search in Google Scholar

41. PAYNE A., BEAN C., HOOPER W., MILLER C. Utility of multiplex ligation-dependent probe amplification (MLPA) for hemophilia mutation screening. J Thromb Haemost. 2012;10(9):1951–4.10.1111/j.1538-7836.2012.04843.x452138622759210Search in Google Scholar

42. ALPAR D., DE JONG D., SAVOLA S., YIGITTOP H., KAJTAR B., KERESKAI L. et al. MLPA is a powerful tool for detecting lymphoblastic transformation in chronic myeloid leukemia and revealing the clonal origin of relapse in pediatric acute lymphoblastic leukemia. Cancer Genet. 2012;205(9):465–9.10.1016/j.cancergen.2012.05.00722939399Search in Google Scholar

43. ALHOURANI E., RINCIC M., OTHMAN M., POHLE B., SCHLIE C., GLASER A. et al. Comprehensive chronic lymphocytic leukemia diagnostics by combined multiplex ligation dependent probe amplification (MLPA) and interphase fluorescence in situ hybridization (iFISH). Mol Cytogenet 2014;7:79.10.1186/s13039-014-0079-2424764425435911Search in Google Scholar

44. KOSZTOLANYI S., KISS R., ATANESYAN L., GANGO A., DE GROOT K., STEENKAMER M. et al. High-Throughput Copy Number Profiling by Digital Multiplex Ligation-Dependent Probe Amplification in Multiple Myeloma. J Mol Diagn. 2018;20(6):777–788.10.1016/j.jmoldx.2018.06.00430096382Search in Google Scholar

45. YU C., LIN T., JOU S., LIN C., LIN K., LU M. et al. MLPA and DNA index improve the molecular diagnosis of childhood B-cell acute lymphoblastic leukemia. Sci Rep. 2020;10:11501.10.1038/s41598-020-68311-9735933232661308Search in Google Scholar

46. RACK K., VAN DEN BERG E., HAFERLACH C., BEVERLOO H., COSTA D., ESPINET B. et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia. 2019;33;1851–1867.10.1038/s41375-019-0378-z675603530696948Search in Google Scholar

47. WHEELER F., KIM A., MOSSE C., SHAVER A., YENAMANDRA A., SEEGMILLER A. Limited Utility of Fluorescence In Situ Hybridization for Recurrent Abnormalities in Acute Myeloid Leukemia at Diagnosis and Follow-up. Am J Clin Pathol. 2018;149(5):418–424.10.1093/ajcp/aqy002588892129538617Search in Google Scholar

eISSN:
2501-062X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology