1. bookVolume 57 (2019): Edizione 3 (September 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2501-062X
Prima pubblicazione
30 Mar 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Non-alcoholic fatty pancreas disease – practices for clinicians

Pubblicato online: 09 Sep 2019
Volume & Edizione: Volume 57 (2019) - Edizione 3 (September 2019)
Pagine: 209 - 219
Ricevuto: 30 Dec 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2501-062X
Prima pubblicazione
30 Mar 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. ALEMPIJEVIC T., DRAGASEVIC S., ZEC S., POPOVIC D., MILOSAVLJEVIC T. Non-alcoholic fatty pancreas disease. Postgrad Med J 2017; 93(1098):226-230.10.1136/postgradmedj-2016-13454628069746Search in Google Scholar

2. SMITS M.M., VAN GEENEN E.J.M. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol 2011; 8(3): 169-177.10.1038/nrgastro.2011.421304475Search in Google Scholar

3. ROMANA B.S., CHELA H., DAILEY F.E., NASSIR F., TAHAN V. Non-alcoholic fatty pancreas disease (NAFPD). A silent spectator or the fifth component of metabolic syndrome? A literature review. Endocrine Metab Immune Disord – Drug Targets 2018; 18(6): 547-554.10.2174/187153031866618032811130229595117Search in Google Scholar

4. OU H.-Y., WANG C.-Y., YANG Y.-C., CHEN M.-F., CHANG C.-J. The association between nonalcoholic fatty pancreas disease and diabetes. PloSOne 2013; 8(5): e62561.10.1371/journal.pone.0062561364396223671610Search in Google Scholar

5. OGILVIE R.F. The islands of langerhans in 19 cases of obesity. J. Pathol. Bacteriol. 1993; 37(3): 473-481.10.1002/path.1700370314Search in Google Scholar

6. WANG C., OU H., CHEN M., CHANG T., CHANG C. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J AmHeart Assoc 2014: 3(1): e000297.10.1161/JAHA.113.000297395970924572250Search in Google Scholar

7. LESMANA C.R.A., PAKASI L.S., INGGRIANI S., AIDAWATI M.L., LESMANA L.A. Prevalence of non-alcoholic fatty pancreas disease (nafpd) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMCGastroenterol. 2015; 15: 174.Search in Google Scholar

8. ZHOU J., LI M.L., ZHANG D.D., LIN H.Y., DAI X.H., SUN X.L. et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology 2016; 16(4): 578-83.10.1016/j.pan.2016.03.00827050733Search in Google Scholar

9. UYGUN A, KADAYIFCI A, DEMIRCI H, SAGLAM M, SAKIN YS, OZTURK K et al. The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur. J. Intern. Med 2015; 26(1): 37-41.Search in Google Scholar

10. AL-HADDAD M, KHASHAB M, ZYROMSKI N, PUNGPAPONG S, WALLACE MB, SCOLAPIO J et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas 2009; 36(6): 672-5.10.1097/MPA.0b013e3181a9d5af19506531Search in Google Scholar

11. SCHWENZER NF, MACHANN J, MARTIROSIAN P, STEFAN N, SCHRAML C, FRITSCHE A et al. Quantification of pancreatic lipomatosis and liver steatosis by MRI: Comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest. Radiol. 2008; 43(5): 330-337.Search in Google Scholar

12. HENI M, MACHANN J, STAIGER H, SCHWENZER NF, PETER A, SCHICK F et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes. Metab. Res. Rev. 2010; 26(3) 200-205.10.1002/dmrr.107320225188Search in Google Scholar

13. GABORIT B, ABDESSELAM I, KOBER F, JACQUIER A, RONSIN O, EMUNGANIA O, et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int. J. Obes. 2015; 39(3): 480-487.Search in Google Scholar

14. VAN GEENEN E.-J.M., SMITS M. M., SCHREUDER T. C.M.A., VAN DER PEET D.L., BLOEMENA E., MULDER C.J.J. Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas 2010; 39(8): 1185-1190.10.1097/MPA.0b013e3181f6fce220871475Search in Google Scholar

15. PACIFICO L, DI MARTINO M, ANANIA C, ANDREOLI GM, BEZZI M, CATALANO C et al. Pancreatic fat and β-cell function in overweight/obese children with nonalcoholic fatty liver disease. World J. Gastroenterol. 2015; 21(15): 4688-4695.Search in Google Scholar

16. TARGHER G, ROSSI AP, ZAMBONI GA, FANTIN F, ANTONIOLI A, CORZATO F et al. Pancreatic fat accumulation and its relationship with liver fat content and other fat depots in obese individuals. J. Endocrinol. Invest. 2012; 35(8): 748-753.Search in Google Scholar

17. LINGVAYI, ESSER V, LEGENDRE JL, PRICE AL, WERTZ KM, ADAMS-HUET B et al. Noninvasive quantification of pancreatic fat in humans. J. Clin. Endocrinol. Metab. 2009; 94(10): 4070-4076.Search in Google Scholar

18. ROSSI AP, FANTIN F, ZAMBONI GA, MAZZALI G, RINALDI CA, DEL GIGLIO M. et al. Predictors of ectopic fat accumulation in liver and pancreas in obese men and women. Obesity (Silver Spring). 2011; 19(9): 1747-1754.10.1038/oby.2011.11421593811Search in Google Scholar

19. WU W.-C., WANG C.-Y. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case-control retrospective study. Cardiovasc. Diabetol. 2013; 12: 77.Search in Google Scholar

20. LI S., SU L., LV G., ZHAO W., CHEN J. Transabdominal ultrasonography of the pancreas is superior to that of the liver for detection of ectopic fat deposits resulting from metabolic syndrome. Medicine (Baltimore) 2017; 96 (37): e8060.10.1097/MD.0000000000008060560467028906401Search in Google Scholar

21. WENG S., ZHOU J., CHEN X., SUN Y., MAO Z., CHAI K. Prevalence and factors associated with nonalcoholic fatty pancreas disease and its severity in China. Medicine (Baltimore). 2018; 97 (26): e11293.10.1097/MD.0000000000011293603962729953011Search in Google Scholar

22. LEE SE, JANG JY, LIM CS, KANG MJ, KIM SH, KIM MA et al. Measurement of pancreatic fat by magnetic resonance imaging: predicting the occurrence of pancreatic fistula after pancreatoduodenectomy. Ann. Surg. 2010; 51 (251): 932-936.Search in Google Scholar

23. NAVINA S, ACHARYA C, DELANY JP, ORLICHENKO LS, BATY CJ, SHIVA SS et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med 2011; 3 (107): 107ra110.10.1126/scitranslmed.3002573332136222049070Search in Google Scholar

24. ACHARYA C, CLINE RA, JALIGAMA D, NOEL P, DELANY JP, BAE K et al. Fibrosis reduces severity of acute-on-chronic pancreatitis in humans. Gastroenterology 2013; 145 (2): 466-475.10.1053/j.gastro.2013.05.012396481623684709Search in Google Scholar

25. SEPE PS, OHRI A, SANAKA S, BERZIN TM, SEKHON S, BENNETT G et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest. Endosc. 2011; 73 (5): 987-993.Search in Google Scholar

26. ACHARYA C., NAVINA S., SINGH V.P. Role of pancreatic fat in the outcomes of pancreatitis. Pancreatology 2014; 14 (5): 403-408.10.1016/j.pan.2014.06.004418515225278311Search in Google Scholar

27. ROSSO E, CASNEDI S, PESSAUX P, OUSSOULTZOGLOU E, PANARO F, MAHFUD M et al. The role of "fatty pancreas" and of BMI in the occurrence of pancreatic fistula after pancreaticoduodenectomy. J. Gastrointest. Surg., 2009; 13 (10): 1845-1851.Search in Google Scholar

28. TOMITA Y, AZUMA K, NONAKA Y, KAMADA Y, TOMOEDA M, KISHIDA M et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas 2014; 43 (7): 1032-1041.10.1097/MPA.000000000000015924991971Search in Google Scholar

39. CATANZARO R., CUFFARI B., ITALIA A., MAROTTA F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J. Gastroenterol. 2016; 22(34): 7660-7675.Search in Google Scholar

30. VIRTUE S., VIDAL-PUIG A. It’s not how fat you are, it’s what you do with it that counts. PLoS Biol. 2008; 6(9): e237.10.1371/journal.pbio.0060237255384318816166Search in Google Scholar

31. SKURK T., ALBERTI-HUBER C., HERDER C., HAUNER H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007; 92(3):1023-1033.Search in Google Scholar

32. BLÜHER M. Adipose tissue dysfunction in obesity. Exp. Clin. Endocrinol. Diabetes 2009; 117 (06): 241-250.10.1055/s-0029-119204419358089Search in Google Scholar

33. SCHA J.E. Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol.2003; 14 (3): 281-287.10.1097/00041433-200306000-0000812840659Search in Google Scholar

34. YE J. Mechanisms of insulin resistance in obesity. Front. Med. 2013; 7 (1): 14-24.10.1007/s11684-013-0262-6393601723471659Search in Google Scholar

35. PINNICK K.E., COLLINS S.C., LONDOS C., GAUGUIER D., CLARK A., FIELDING B.A. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 2008; 16 (3): 522-530.10.1038/oby.2007.11018239594Search in Google Scholar

36. MARKS W.M., FILLY R.A., CALLEN P.W. Ultrasonic evaluation of normal pancreatic echogenicity and its relationship to fat deposition. Radiology 1980; 137 (2): 475-9.10.1148/radiology.137.2.74336807433680Search in Google Scholar

37. NGHIEM D.D., OLSON P.R., ORMOND D. The fatty pancreas allograf T anatomopathologic findings and clinical experience. Transplant. Proc. 2004; 36 (4): 1045-1047.Search in Google Scholar

38. WALTERS M.N. Adipose atrophy of the exocrine pancreas. J. Pathol. Bacteriol. 1996; 92 (2): 547-557.10.1002/path.17009202325964381Search in Google Scholar

39. WELLEN K.E., HOTAMISLIGIL G.S. Inflammation, stress, and diabetes. J. Clin. Invest 2005; 115 (5): 1111-1119.10.1172/JCI25102108718515864338Search in Google Scholar

40. VAN RAALTE D.H., VAN DER ZIJL N.J., DIAMANT M. Pancreatic steatosis in humans: cause or marker of lipotoxicity? Curr. Opin. Clin. Nutr. Metab. Care 2010; 13 (4): 478-485.Search in Google Scholar

41. TSATSOULIS A., MANTZARIS M.D., BELLOU S., ANDRIKOULA M. Insulin resistance: An adaptive mechanism becomes maladaptive in the current environment – An evolutionary perspective. Metabolism 2013; 62 (5): 622-633.10.1016/j.metabol.2012.11.00423260798Search in Google Scholar

42. UNGER R.H., SCHERER P.E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010; 21 (6): 345-352.Search in Google Scholar

43. LEE JS, KIM SH, JUN DW, HAN JH, JANG EC, PARK JY et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J. Gastroenterol. 2009; 15 (15): 1869-1875.Search in Google Scholar

44. Then and now: ATP III vs. IV – American College of Cardiology [Online]. Available: https://www.acc.org/latest-in-cardiology/articles/2014/07/18/16/03/then-and-now-atp-iii-vs-iv. [Accessed: 29-Nov-2018].Search in Google Scholar

45. MATSUMOTO S, MORI H, MIYAKE H, TAKAKI H, MAEDA T, YAMADA Y et al. Uneven fatty replacement of the pancreas: evaluation with CT. Radiology 1995; 194(2): 453-458.10.1148/radiology.194.2.78247267824726Search in Google Scholar

46. KÜHN JP, BERTHOLD F, MAYERLE J, VÖLZKE H, REEDER SB, RATHMANN W et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 2015; 276 (1):129-136.10.1148/radiol.15140446455420825658037Search in Google Scholar

47. CHANTAROJANASIRI T., HIROOKA Y., RATANACHU-EK T., KAWASHIMA H., OHNO E., GOTO H. Evolution of pancreas in aging: degenerative variation or early changes of disease? J. Med. Ultrason.2015; 42 (2): 177-183.Search in Google Scholar

48. JEONG H.T., LEE M.S., KIM M.-J. Quantitative analysis of pancreatic echogenicity on transabdominal sonography: correlations with metabolic syndrome. J. Clin. Ultrasound 2015; 43 (2): 98-108.Search in Google Scholar

49. POLKOWSKI M, JENSSEN C, KAYE P, CARRARA S, DEPREZ P, GINES A et al. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Technical guideline – March 2017. Endoscopy 2017; 49(10): 989-1006.10.1055/s-0043-11921928898917Search in Google Scholar

50. CHOI CW, KIM GH, KANG DH, KIM HW, KIM DU, HEO J et al. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J. Gastroenterol. 2010; 16 (34): 4329-34.Search in Google Scholar

51. USTUNDAG Y., CEYLAN G., HEKIMOGLU K. Pancreatic hyperechogenicity on endoscopic ultrasound examination. World J. Gastroenterol. 2011; 17 (15): 2061-2062.Search in Google Scholar

52. COSGROVE D, PISCAGLIA F, BAMBER J, BOJUNGA J, CORREAS JM, GILJA OH et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall der Medizin – Eur. J. Ultrasound 2013; 34 (03): 238-253.Search in Google Scholar

53. KUWAHARA T, HIROOKA Y, KAWASHIMA H, OHNO E, YOKOYAMA Y, FUJII T et al. Usefulness of endoscopic ultrasonography-elastography as a predictive tool for the occurrence of pancreatic fistula after pancreatoduodenectomy. J. Hepatobiliary. Pancreat. Sci. 2017; 24 (12): 649-656.Search in Google Scholar

54. BARRETO S.G., DIRKZWAGER I., WINDSOR J.A., PANDANABOYANA S. Predicting post-operative pancreatic fistulae using preoperative pancreatic imaging: a systematic review. ANZ J. Surg. 2018 [Epub ahead of print].10.1111/ans.1489130306712Search in Google Scholar

55. MATHUR A, HERNANDEZ J, SHAHEEN F, SHROFF M, DAHAL S, MORTON C et al. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB (Oxford). 2011; 13(6): 404-10.10.1111/j.1477-2574.2011.00304.x310309721609373Search in Google Scholar

56. TRANCHART H, GAUJOUX S, REBOURS V, VULLIERME MP, DOKMAK S, LEVY P et al. Preoperative CT scan helps to predict the occurrence of severe pancreatic fistula after pancreaticoduodenectomy. Ann. Surg. 2012; 256 (1): 139-145.Search in Google Scholar

57. ROBERTS K.J., STOREY R., HODSON J., SMITH A.M., MORRIS-STIFF G. Pre-operative prediction of pancreatic fistula: is it possible?, Pancreatology 2013; 13(4) 423-428.10.1016/j.pan.2013.04.32223890142Search in Google Scholar

58. SAISHO Y, BUTLER AE, MEIER JJ, MONCHAMP T, ALLEN-AUERBACH M, RIZZA RA et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 2007; 20(8): 933-942.Search in Google Scholar

59. KIM SY, KIM H, CHO JY, LIM S, CHA K, LEE KH et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 2014; 271 (1): 104-112.10.1148/radiol.1312288324475851Search in Google Scholar

60. HU H.H., KIM H.-W., NAYAK K.S., GORAN M.I. Comparison of fat–water MRI and single-voxel MRS in the Assessment of hepatic and pancreatic fat fractions in humans. Obesity 2010; 18(4): 841-847.10.1038/oby.2009.352284703719834463Search in Google Scholar

61. LIVINGSTONE RS, BEGOVATZ P, KAHL S, NOWOTNY B, STRASSBURGER K, GIANI G et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with 1H MRS. Magn. Reson. Mater. Physics. Biol. Med. 2014; 27(5): 397-405.Search in Google Scholar

62. MA J., SONG Z., YAN F. Detection of hepatic and pancreatic fat infiltration in type II diabetes mellitus patients with IDEAL-Quant using 3.0T MR: comparison with single-voxel proton spectroscopy. Chin. Med. J. (Engl). 2014; 127 (20): 3548-52.Search in Google Scholar

63. OLSEN T.S. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol. Microbiol. Scand. A. 1978; 86A(5): 367-73.10.1111/j.1699-0463.1978.tb02058.x716899Search in Google Scholar

64. WONG VW, WONG GL, YEUNG DK, ABRIGO JM, KONG AP, CHAN RS et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 2014; 109 (4): 589-597.Search in Google Scholar

65. YAMAZAKI H, TSUBOYA T, KATANUMA A, KODAMA Y, TAUCHI S, DOHKE M et al. Lack of independent association between fatty pancreas and incidence of type 2 diabetes: 5-year Japanese cohort study. Diabetes Care2016; 39 (10): 1677-1683.10.2337/dc16-007427422578Search in Google Scholar

66. KIM MK, CHUN HJ, PARK JH, YEO DM, BAEK KH, SONG KH et al. The association between ectopic fat in the pancreas and subclinical atherosclerosis in type 2 diabetes. Diabetes Res. Clin. Pract. 2014; 106 (3): 590-596.Search in Google Scholar

67. MATHUR A, PITT HA, MARINE M, SAXENA R, SCHMIDT CM, HOWARD TJ et al. Fatty pancreas. Ann. Surg. 2007; 246 (6): 1058-1064.Search in Google Scholar

68. CAVALLINI G., FRULLONI L., VAONA B., DI FRANCESCO V., BOVO P. Is hyperamylasemia related to dyslipidemia? Gastroenterology 1997; 112 (3): 1058-059.Search in Google Scholar

69. GULLO L., LUCREZIO L., MIGLIORI M., BASSI M., NESTICÒ V., COSTA P.L. Benign pancreatic hyperenzymemia or Gullo’s syndrome. Adv. Med. Sci. 2008; 53(1): 1-5.Search in Google Scholar

70. KHAN N.A., AMIN M.S., ISLAM M.Z. Pancreatic lipomatosis with massive steatorrhea. Mymensingh Med. J. 2011; 20 (4): 712-714.Search in Google Scholar

71. LOZANO M, NAVARRO S, PÉREZ-AYUSO R, LLACH J, AYUSO C, GUEVARA MC et al. Lipomatosis of the pancreas: an unusual cause of massive steatorrhea. Pancreas 1988; 3(5): 580-582.10.1097/00006676-198810000-000123186686Search in Google Scholar

72. AUBERT A, GORNET JM, HAMMEL P, LÉVY P, O’TOOLE D, RUSZNIEWSKI P et al. Diffuse primary fat replacement of the pancreas: an unusual cause of steatorrhea. Gastroenterol. Clin. Biol. 2007; 31 (3): 303-306.Search in Google Scholar

73. AMBESH P., LAL H. Pancreatic lipomatosis: complete replacement of pancreas by fat. J. Clin. Diagn. Res. 2015; 9 (10): OL01.10.7860/JCDR/2015/15085.6653462527926557560Search in Google Scholar

74. PRASANNA KUMAR H.R., GOWDAPPA H.B., HOSMANI T., URS T. Exocrine dysfunction correlates with endocrinal impairment of pancreas in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2018; 22 (1): 121-125.Search in Google Scholar

75. HARDT PD, HAUENSCHILD A, NALOP J, MARZEION AM, JAEGER C, TEICHMANN J, et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus. A multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology 2003; 3 (5): 395-402.10.1159/00007365514526149Search in Google Scholar

76. ČABARKAPA V, DJERIĆ M, MITROVIĆ M, KOJIĆ-DAMJANOV S, ISAKOV I, VUKOVIĆ B et al. Fecal pancreatic elastase-1 and erythrocyte magnesium levels in diabetes type 1 and type 2. Magnes. Res. 2018; 31 (1): 1-10.Search in Google Scholar

77. TERZIN V, VÁRKONYI T, SZABOLCS A, LENGYEL C, TAKÁCS T, ZSÓRI G et al. Prevalence of exocrine pancreatic insufficiency in type 2 diabetes mellitus with poor glycemic control. Pancreatology 2014; 14 (5): 356-60.10.1016/j.pan.2014.07.00425278304Search in Google Scholar

78. ESPOSITO K., CHIODINI P., COLAO A., LENZI A., GIUGLIANO D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 2012; 35 (11): 2402-2411.10.2337/dc12-0336Search in Google Scholar

79. MENDONÇA FM, DE SOUSA FR, BARBOSA AL, MARTINS SC, ARAÚJO RL, SOARES R et al. Metabolic syndrome and risk of cancer: Which link? Metabolism, 2015; 64 (2): 182-189.10.1016/j.metabol.2014.10.008Search in Google Scholar

80. XU M., JUNG X., HINES O.J., EIBL G., CHEN Y. Obesity and pancreatic cancer: overview of epidemiology and potential prevention by weight loss. Pancreas 2018; 47 (2): 158-162.10.1097/MPA.0000000000000974Search in Google Scholar

81. MATHUR A, ZYROMSKI NJ, PITT HA, AL-AZZAWI H, WALKER JJ, SAXENA R et al. Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. J. Am. Coll. Surg., 2009; 208 (5): 989-94; discussion 994-996.10.1016/j.jamcollsurg.2008.12.026Search in Google Scholar

82. MALVEZZI M, CARIOLI G, BERTUCCIO P, BOFFETTA P, LEVI F, LA VECCHIA C et al. European cancer mortality predictions for the year 2018 with focus on colorectal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018; 29 (4): 1016-1022.Search in Google Scholar

83. HONKA H, KOFFERT J, HANNUKAINEN JC, TUULARI JJ, KARLSSON HK, IMMONEN H et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J. Clin. Endocrinol. Metab. 2015; 100 (5): 2015-023.Search in Google Scholar

84. HANSEN E.N., TORQUATI A., ABUMRAD N.N. Results of bariatric surgery. Annu. Rev. Nutr. 2006; 26 (1): 481-511.10.1146/annurev.nutr.26.061505.111242Search in Google Scholar

85. CUMMINGS BP, STRADER AD, STANHOPE KL, GRAHAM JL, LEE J, RAYBOULD HE. et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 2010; 138 (7): 2437-2446.e1.10.1053/j.gastro.2010.03.005Search in Google Scholar

86. MALIN S.K., KASHYAP S.R. Effects of various gastrointestinal procedures on β-cell function in obesity and type 2 diabetes. Surg. Obes. Relat. Dis. 2016; 12 (6): 1213-1219.Search in Google Scholar

87. MCCARTY M.F. Complementary measures for promoting insulin sensitivity in skeletal muscle. Med. Hypotheses 1998; 51 (6): 451-464.10.1016/S0306-9877(98)90065-2Search in Google Scholar

88. WRÓBEL M.P., MAREK B., KAJDANIUK D., ROKICKA D., SZYMBORSKA-KAJANEK A., STROJEK K. Metformin – a new old drug. Endokrynol. Pol. 2017; 68 (4): 482-496.Search in Google Scholar

89. PIRO S., RABUAZZO A.M., RENIS M., PURRELLO F. Effects of metformin on oxidative stress, adenine nucleotides balance, and glucose-induced insulin release impaired by chronic free fatty acids exposure in rat pancreatic islets. J. Endocrinol. Invest. 2012; 35(5): 504-510.Search in Google Scholar

90. TAJIMA K, SHIRAKAWA J, OKUYAMA T, KYOHARA M, YAMAZAKI S, TOGASHI Y et al. Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. Am. J. Physiol. Metab. 2017; 313 (3): E367-E380.10.1152/ajpendo.00447.201628512156Search in Google Scholar

91. REIMER R.A., GROVER G.J., KOETZNER L., GAHLER R.J., LYON M.R., WOOD S. Combining sitagliptin/metformin with a functional fiber delays diabetes progression in Zucker rats. J. Endocrinol. 2014; 220 (3): 361-373.10.1530/JOE-13-048424389593Search in Google Scholar

92. LEBOVITZ H.E., BANERJI M.A. Insulin resistance and its treatment by thiazolidinediones. Recent Prog. Horm. Res.2001; 56: 265-294.Search in Google Scholar

93. DUPLOMB L, LEE Y, WANG MY, PARK BH, TAKAISHI K, AGARWAL AK et al. Increased expression and activity of 11beta-HSD-1 in diabetic islets and prevention with troglitazone. Biochem. Biophys. Res. Commun. 2004; 313 (3): 594-599.Search in Google Scholar

94. SHIMABUKURO M., ZHOU Y.T., LEE Y., UNGER R.H. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J. Biol. Chem. 1998; 273(6): 3547-3550.Search in Google Scholar

95. JIA D.M., FUKUMITSU K.I., TABARU A., AKIYAMA T., OTSUKI M. Troglitazone stimulates pancreatic growth in congenitally CCK-A receptor-deficient OLETF rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280 (5): R1332-40.10.1152/ajpregu.2001.280.5.R133211294751Search in Google Scholar

96. ZHANG W., MIAO J., LI P., WANG Y., ZHANG Y. Up-regulation of components of the renin–angiotensin system in liver fibrosis in the rat induced by CCL4. Res. Vet. Sci. 2013; 95 (1): 54-58.Search in Google Scholar

97. SOUZA-MELLO V. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade. World J. Hepatol. 2017; 9 (2): 74-79.10.4254/wjh.v9.i2.74524153128144388Search in Google Scholar

98. SOUZA-MELLO V., GREGÓRIO B.M., CARDOSO-DE-LEMOS F.S., DE CARVALHO L., AGUILA M.B., MANDARIMDE-LACERDA C.A. Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin. Sci. (Lond) 2010; 119 (6): 239-250.Search in Google Scholar

99. SOUZA-MELLO V., GREGÓRIO B.M., RELVAS-LUCAS B., DA SILVA FARIA T., AGUILA M.B., MANDARIM-DELACERDA C.A. Pancreatic ultrastructural enhancement due to telmisartan plus sitagliptin treatment in diet-induced obese C57BL/6 mice. Pancreas 2011; 40 (5): 715-722.10.1097/MPA.0b013e318215392221602737Search in Google Scholar

100. YU T, LIU R, LI M, LI X, QIANG O, HUANG W et al. Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. Wei Sheng Yan Jiu 2014; 43 (2): 186-92.Search in Google Scholar

101. GOTOH K, INOUE M, SHIRAISHI K, MASAKI T, CHIBA S, MITSUTOMI K et al. Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease. PLoS One 2012; 7 (12): e53154.10.1371/journal.pone.0053154353234723285260Search in Google Scholar

102. TURNER N, LI JY, GOSBY A, TO SW, CHENG Z, MIYOSHI H et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57 (5): 1414-1418.10.2337/db07-155218285556Search in Google Scholar

103. ZHANG Z, ZHANG H, LI B, MENG X, WANG J, ZHANG Y et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 2014; 5 (1): 5493.Search in Google Scholar

104. ZHANG Z, ZHANG H, LI B, MENG X, WANG J, ZHANG Y et al. Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells. Chin. J. Integr.Med.2016; 22 (7): 496-502.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo