Accesso libero

A modified Distributed Scatterer InSAR method: A case study on potential landslide body detection in Faer Town, China

, , , ,  e   
20 mag 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Ansari, H., De Zan, F., and Bamler, R. (2017). Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55(10):5637–5652, doi:10.1109/tgrs.2017.2711037. Search in Google Scholar

Ansari, H., De Zan, F., and Bamler, R. (2018). Efficient Phase Estimation for Interferogram Stacks. IEEE Transactions on Geoscience and Remote Sensing, 56(7):4109–4125, doi:10.1109/tgrs.2018.2826045. Search in Google Scholar

Bateson, L., Cigna, F., Boon, D., and Sowter, A. (2015). The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation, 34:249–257, doi:10.1016/j.jag.2014.08.018. Search in Google Scholar

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11):2375–2383, doi:10.1109/tgrs.2002.803792. Search in Google Scholar

Dai, K., Deng, J., Xu, Q., Li, Z., Shi, X., Hancock, C., Wen, N., Zhang, L., and Zhuo, G. (2022). Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GIScience and Remote Sensing, 59(1):1226–1242, doi:10.1080/15481603.2022.2100054. Search in Google Scholar

Deledalle, C.-A., Denis, L., Tupin, F., Reigber, A., and Jager, M. (2015). NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Transactions on Geoscience and Remote Sensing, 53(4):2021–2038, doi:10.1109/tgrs.2014.2352555. Search in Google Scholar

Dong, J., Qiu, M., Zhao, J., Li, H., and Wu, Q. (2022). Deformation instability mechanism of slope in Fa’er Town, Search in Google Scholar

Shuicheng County, Guizhou, China. Alexandria Engineering Journal, 61(10):8289–8295, doi:10.1016/j.aej.2022.01.042. Search in Google Scholar

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A. (2011). A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9):3460–3470, doi:10.1109/tgrs.2011.2124465. Search in Google Scholar

Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1):8–20, doi:10.1109/36.898661. Search in Google Scholar

Fobert, M.-A., Singhroy, V., and Spray, J. G. (2021). InSAR Monitoring of Landslide Activity in Dominica. Remote Sensing, 13(4):815, doi:10.3390/rs13040815. Search in Google Scholar

Fornaro, G., Verde, S., Reale, D., and Pauciullo, A. (2015). CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing. IEEE Transactions on Geoscience and Remote Sensing, 53(4):2050–2065, doi:10.1109/tgrs.2014.2352853. Search in Google Scholar

Guo, J., Cui, Y., Xu, W., Yin, Y., Li, Y., and Jin, W. (2022). Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: a case study. Landslides, 19(4):773–788, doi:10.1007/s10346-021-01791-6. Search in Google Scholar

He, L., Pei, P., Zhang, X., Qi, J., Cai, J., Cao, W., Ding, R., and Mao, Y. (2023a). Sensitivity Evaluation of Time Series InSAR Monitoring Results for Landslide Detection. Remote Sensing, 15(15):3906, doi:10.3390/rs15153906. Search in Google Scholar

He, Y., Wang, W., Zhang, L., Chen, Y., Chen, Y., Chen, B., He, X., and Zhao, Z. (2023b). An identification method of potential landslide zones using InSAR data and landslide susceptibility. Geomatics,NaturalHazardsandRisk, 14(1), doi:10.1080/19475705.2023.2185120. Search in Google Scholar

Hetland, E. A., Musé, P., Simons, M., Lin, Y. N., Agram, P. S., and DiCaprio, C. J. (2012). Multiscale InSAR Time Series (MInTS) analysis of surface deformation. JournalofGeophysical Research: Solid Earth, 117(B2), doi:10.1029/2011jb008731. Search in Google Scholar

Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), doi:10.1029/2008gl034654. Search in Google Scholar

Hu, K., Wu, C., Tang, J., Pasuto, A., Li, Y., and Yan, S. (2018). New understandings of the June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 15(12):2465–2474, doi:10.1007/s10346-018-1073-2. Search in Google Scholar

Jia, H., Wang, Y., Ge, D., Deng, Y., and Wang, R. (2022). InSAR Study of Landslides: Early Detection, Three-Dimensional, and Long-Term Surface Displacement Estimation—A Case of Xiaojiang River Basin, China. Remote Sensing, 14(7):1759, doi:10.3390/rs14071759. Search in Google Scholar

Jiao, Y.-Y., Wang, Z.-H., Wang, X.-Z., Adoko, A. C., and Yang, Z.-X. (2013). Stability assessment of an ancient landslide crossed by two coal mine tunnels. Engineering Geology, 159:36–44, doi:10.1016/j.enggeo.2013.03.021. Search in Google Scholar

Li, W., Zhan, W., Lu, H., Xu, Q., Pei, X., Wang, D., Huang, R., and Ge, D. (2022). Precursors to large rockslides visible on optical remote-sensing images and their implications for landslide early detection. Landslides, 20(1):1–12, doi:10.1007/s10346-022-01960-1. Search in Google Scholar

Li, X., Zhou, L., Su, F., and Wu, W. (2021). Application of InSAR technology in landslide hazard: Progress and prospects. National Remote Sensing Bulletin, 25(2):614–629, doi:10.11834/jrs.20209297. Search in Google Scholar

Ma, Z.-F., Jiang, M., and Huang, T. (2020). A sequential approach for Sentinel-1 TOPS time-series coregistration over low coherence scenarios. IEEE Transactions on Geoscience and Remote Sensing, 59(6):4818–4826, doi:10.1109/TGRS.2020.3009996. Search in Google Scholar

Ma, Z.-F., Jiang, M., Khoshmanesh, M., and Cheng, X. (2021). Time series phase unwrapping based on graph theory and compressed sensing. IEEE Transactions on Geoscience and Remote Sensing, 60:1–12, doi:10.1109/TGRS.2021.3066784. Search in Google Scholar

Ma, Z.-F., Jiang, M., Zhao, Y., Malhotra, R., and Yong, B. (2019). Minimum spanning tree co-registration approach for time-series Sentinel-1 TOPS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8):3004–3013, doi:10.1109/JSTARS.2019.2920717. Search in Google Scholar

Moretto, S., Bozzano, F., and Mazzanti, P. (2021). The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sensing, 13(18):3735, doi:10.3390/rs13183735. Search in Google Scholar

Perissin, D. and Wang, T. (2011). Time-Series InSAR Applications Over Urban Areas in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1):92–100, doi:10.1109/jstars.2010.2046883. Search in Google Scholar

Schmitt, M., Schonberger, J. L., and Stilla, U. (2014). Adaptive Covariance Matrix Estimation for Multi-Baseline InSAR Data Stacks. IEEE Transactions on Geoscience and Remote Sensing, 52(11):6807–6817, doi:10.1109/tgrs.2014.2303516. Search in Google Scholar

van Natijne, A., Bogaard, T., van Leijen, F., Hanssen, R., and Lindenbergh, R. (2022). World-wide InSAR sensitivity index for landslide deformation tracking. International Journal of Applied Earth Observation and Geoinformation, 111:102829, doi:10.1016/j.jag.2022.102829. Search in Google Scholar

Vu, P. V. H., Breloy, A., Brigui, F., Yan, Y., and Ginolhac, G. (2023). Robust Phase Linking in InSAR. IEEE Transactions on Geoscience and Remote Sensing, 61:1–11, doi:10.1109/tgrs.2023.3289338. Search in Google Scholar

Wang, Y. and Zhu, X. X. (2016). Robust Estimators for Multipass SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 54(2):968–980, doi:10.1109/tgrs.2015.2471303. Search in Google Scholar

Werner, C., Wegmuller, U., Wiesmann, A., and Strozzi, T. (2003). Interferometric Point Target Analysis with JERS-1 Lband SAR data. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), volume 7 of IGARSS-03, pages 4359–4361. IEEE, doi:10.1109/igarss.2003.1295515. Search in Google Scholar

Wu, J. J., Zhi, Q. Q., and Li, X. (2023). Loop source semiairborne TEM system and its application in landslide detection (in Chinese). Chinese Journal of Geophysics, 66(4):1758–1770, doi:10.6038/cjg2022P0960. Search in Google Scholar

Yunjun, Z., Fattahi, H., and Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers and Geosciences, 133:104331, doi:10.1016/j.cageo.2019.104331. Search in Google Scholar

Zhang, L., Dai, K., Deng, J., Ge, D., Liang, R., Li, W., and Xu, Q. (2021). Identifying Potential Landslides by Stacking- InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sensing, 13(18):3662, doi:10.3390/rs13183662. Search in Google Scholar

Zhao, C., Dong, Y., Wu, W., Tian, B., Zhou, J., Zhang, P., Gao, S., Yu, Y., and Huang, L. (2023). A Modification to Phase Estimation for Distributed Scatterers in InSAR Data Stacks. Remote Sensing, 15(3):613, doi:10.3390/rs15030613. Search in Google Scholar

Zhou, C., Cao, Y., Yin, K., Wang, Y., Shi, X., Catani, F., and Ahmed, B. (2020). Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sensing, 12(20):3385, doi:10.3390/rs12203385. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Informatica, Informatica, altro, Geoscienze, Geodesia, Cartografia e fotogrametria, Geoscienze, altro