Accesso libero

A comparative analysis of the performance of various GNSS positioning concepts dedicated to precision agriculture

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adamchuk, V. I. (2008). Satellite-based auto-guidance. University of Nebraska at Lincoln Extension Circular, EC706, Lincoln, Nebraska, on-line, Last accessed: 2023.12. Search in Google Scholar

Bak, T. and Jakobsen, H. (2004). Agricultural robotic platform with four wheel steering for weed detection. Biosystems Engineering, 87(2):125–136, doi:10.1016/j.biosystemseng.2003.10.009. Search in Google Scholar

Bell, T. (2000). Automatic tractor guidance using carrier-phase differential GPS. Computers and Electronics in Agriculture, 25(1–2):53–66, doi:10.1016/s0168-1699(99)00055-1. Search in Google Scholar

Catania, P., Comparetti, A., Febo, P., Morello, G., Orlando, S., Roma, E., and Vallone, M. (2020). Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy, 10(7):924, doi:10.3390/agronomy10070924. Search in Google Scholar

Cheein, F. A. A. and Carelli, R. (2013). Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Industrial Electronics Magazine, 7(3):48–58, doi:10.1109/mie.2013.2252957. Search in Google Scholar

Coyne, P., Casey, S., and Milliken, G. (2003). Comparison of differentially corrected GPS sources for support of site-specific management in agriculture. Kansas State University. Agricultural Experiment Station and Cooperative Extension Service. Search in Google Scholar

Esau, T. J., MacEachern, C. B., Farooque, A. A., and Zaman, Q. U. (2021). Evaluation of autosteer in rough terrain at low ground speed for commercial wild blueberry harvesting. Agronomy, 11(2):384, doi:10.3390/agronomy11020384. Search in Google Scholar

Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., Fairbairn, D., Watson, D., and Ge, M. (2018). Multi-GNSS precise point positioning for precision agriculture. Precision Agriculture, 19(5):895–911, doi:10.1007/s11119-018-9563-8. Search in Google Scholar

Harbuck, T. L., Fulton, J. P., McDonald, T. P., and Brodbeck, C. J. (2006). Evaluation of GPS autoguidance systems over varying time periods. In 2006 ASAE Annual Meeting, Portland, Oregon, July 9-12, 2006, por2006. American Society of Agricultural and Biological Engineers, doi:10.13031/2013.21978. Search in Google Scholar

He, L. (2022). Variable rate technologies for precision agriculture. In Zhang, Q., editor, Encyclopedia of Smart Agriculture Technologies, page 1–9. Springer International Publishing, doi:10.1007/978-3-030-89123-7_34-2. Search in Google Scholar

Huisman, L. and de Ligt, H. (2023). Validation of reference frame consistency of GNSS service products. In International Association of Geodesy Symposia. Springer Berlin Heidelberg, doi:10.1007/1345_2023_232. Search in Google Scholar

Huuskonen, J. and Oksanen, T. (2018). Soil sampling with drones and augmented reality in precision agriculture. Computers and Electronics in Agriculture, 154:25–35, doi:10.1016/j.compag.2018.08.039. Search in Google Scholar

Huyghebaert, B., Dubois, G., Defays, G., Namur, C. D., and Gembloux, B. (2013). Actual and global precision of the guidance system AutoTrac from John Deere. In EFITA-WCCACIGR Conference, Sustainable Agriculture through ICT innovation, Turin, Italy, 2013. Search in Google Scholar

International Organization for Standardization (2010). Tractors and machinery for agriculture and forestry – test procedures for positioning and guidance systems in agriculture (ISO Standard No. 12188-1:2010). https://www.iso.org/standard/51271.html. Search in Google Scholar

Karaim, M., Elsheikh, M., and Noureldin, A. (2018). GNSS error sources. In Multifunctional Operation and Application of GPS. InTech, doi:10.5772/intechopen.75493. Search in Google Scholar

Kee, C., Parkinson, B. W., and Axelrad, P. (1991). Wide area differential GPS. Navigation, 38(2):123–145, doi:10.1002/j.2161-4296.1991.tb01720.x. Search in Google Scholar

Keicher, R. and Seufert, H. (2000). Automatic guidance for agricultural vehicles in Europe. Computers and Electronics in Agriculture, 25(1–2):169–194, doi:10.1016/s0168-1699(99)00062-9. Search in Google Scholar

Kim, J. H., Moon, H. C., Woo, H. J., Zhe, H. X., Kim, H. J., Kim, Y. J., and Kye, J. E. (2013). Auto-guidance system for tillage tractor. In 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013). IEEE, doi:10.1109/iccas.2013.6704165. Search in Google Scholar

Lange, A. F. and Peake, J. (2020). Precision agriculture. In Morton, Y., Diggelen, F., Spilker, J., Parkinson, B. W., Lo, S., and Gao, G., editors, Position, Navigation, and Timing Technologies in the 21st Century, page 1735–1747. Wiley, doi:10.1002/9781119458555.ch56. Search in Google Scholar

Luck, J., Pitla, S., Shearer, S., Mueller, T., Dillon, C., Fulton, J., and Higgins, S. (2010). Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles. Computers and Electronics in Agriculture, 70(1):19–26, doi:10.1016/j.compag.2009.08.003. Search in Google Scholar

Mawardi, M., Nugraheni, P., Sutiarso, L., Virgawati, S., and Fuadi, M. (2018). Mapping the Variable-Rate Application (VRA) of precision fertilizing for soybean. Journal of Advanced Research in Applied Mechanics, 51(1):1–9. Search in Google Scholar

Montenbruck, O., Steigenberger, P., and Hauschild, A. (2020). Comparing the ‘Big 4’ – a user’s view on GNSS performance. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, doi:10.1109/plans46316.2020.9110208. Search in Google Scholar

Onyango, C. M., Nyaga, J. M., Wetterlind, J., Söderström, M., and Piikki, K. (2021). Precision agriculture for resource use efficiency in smallholder farming systems in Sub-Saharan Africa: A systematic review. Sustainability, 13(3):1158, doi:10.3390/su13031158. Search in Google Scholar

Perez-Ruiz, M., Slaughter, D. C., Gliever, C., and Upadhyaya, S. K. (2012). Tractor-based Real-time Kinematic-Global Positioning System (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosystems Engineering, 111(1):64–71, doi:10.1016/j.biosystemseng.2011.10.009. Search in Google Scholar

Pini, M., Marucco, G., Falco, G., Nicola, M., and De Wilde, W. (2020). Experimental testbed and methodology for the assessment of RTK GNSS receivers used in precision agriculture. IEEE Access, 8:14690–14703, doi:10.1109/access.2020.2965741. Search in Google Scholar

Radočaj, D., Plaščak, I., and Jurišić, M. (2023). Global Navigation Satellite Systems as state-of-the-art solutions in precision agriculture: A review of studies indexed in the Web of Science. Agriculture, 13(7):1417, doi:10.3390/agriculture13071417. Search in Google Scholar

Reid, J. F. and Searcy, S. W. (1987). Automatic tractor guidance with computer vision. SAE transactions, 96:673–693. Search in Google Scholar

Schönemann, E. (2014). Analysis of GNSS raw observations in PPP solutions. PhD thesis, Technische Universität Darmstadt. Search in Google Scholar

Stombaugh, T. (2018). Satellite-based Positioning Systems for Precision Agriculture, page 25–35. American Society of Agronomy and Soil Science Society of America, doi:10.2134/precisionagbasics.2017.0036. Search in Google Scholar

Teunissen, P. J. G. and Khodabandeh, A. (2015). Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3):217–240, doi:10.1007/s00190-014-0771-3. Search in Google Scholar

Tran, H. T., Cao, W., Reutemann, M., Dai, L., Oster-meier, R., and Kormann, G. (2020). GNSS positioning and navigation - a foundational element of digital farming. In 2020 European Navigation Conference (ENC). IEEE, doi:10.23919/enc48637.2020.9317529. Search in Google Scholar

Zabalegui, P., De Miguel, G., Perez, A., Mendizabal, J., Goya, J., and Adin, I. (2020). A review of the evolution of the integrity methods applied in GNSS. IEEE Access, 8:45813–45824, doi:10.1109/access.2020.2977455. Search in Google Scholar

Zumberge, J. F., He˚in, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3):5005–5017, doi:10.1029/96jb03860. Search in Google Scholar

eISSN:
2391-8152
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry