Accesso libero

A crossvalidation-based comparison of kriging and IDW in local GNSS/levelling quasigeoid modelling

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Akyilmaz, O., Özlüdemir, M., Ayan, T., and Çelik, R. (2009). Soft computing methods for geoidal height transformation. Earth, planets and space, 61(7):825–833, doi:10.1186/BF03353193.10.1186/BF03353193 Search in Google Scholar

Babak, O. and Deutsch, C. V. (2009). Statistical approach to inverse distance interpolation. Stochastic Environmental Research and Risk Assessment, 23(5):543–553.10.1007/s00477-008-0226-6 Search in Google Scholar

Banasik, P., Bujakowski, K., Kudrys, J., and Ligas, M. (2020). Development of a precise local quasigeoid model for the city of Krakow – QuasigeoidKR2019. Reports on Geodesy and Geoinformatics, 109(1):25–31, doi:10.2478/rgg-2020-0004.10.2478/rgg-2020-0004 Search in Google Scholar

Borowski, Ł. and Banaś, M. (2019). The best robust estimation method to determine local surface. Baltic Journal of Modern Computing, 7(4):525–540, doi:10.22364/bjmc.2019.7.4.06.10.22364/bjmc.2019.7.4.06 Search in Google Scholar

Borowski, Ł. and Banasik, P. (2020). The conversion of heights of the benchmarks of the detailed vertical reference network into the PL-EVRF2007-NH frame. Reports on geodesy and geoinformatics, 109(1):1–7, doi:10.2478/rgg-2020-0001.10.2478/rgg-2020-0001 Search in Google Scholar

Chiles, J.-P. and Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty. John Wiley & Sons.10.1002/9780470316993 Search in Google Scholar

Cressie, N. (1993). Statistics for spatial data. John Wiley & Sons.10.1002/9781119115151 Search in Google Scholar

Dawod, G. M. and Abdel-Aziz, T. M. (2020). Utilization of geographically weighted regression for geoid modelling in Egypt. Journal of Applied Geodesy, 14(1):1–12, doi:10.1515/jag-2019-0009.10.1515/jag-2019-0009 Search in Google Scholar

Elshambaky, H. T. (2018). Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt. Journal of Applied Geodesy, 12(1):29–43, doi:10.1515/jag-2017-0017.10.1515/jag-2017-0017 Search in Google Scholar

Gucek, M. and Bašić, T. (2009). Height transformation models from ellipsoidal into the normal orthometric height system for the territory of the city of Zagreb. Studia Geophysica et Geodaetica, 53(1):17–38, doi:10.1007/s11200-009-0002-1.10.1007/s11200-009-0002-1 Search in Google Scholar

Hofmann-Wellenhof, B. and Moritz, H. (2006). Physical geodesy. Springer Science & Business Media. Search in Google Scholar

Jordan, S. K. (1972). Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid. Journal of Geophysical Research, 77(20):3660–3670, doi:10.1029/JB077i020p03660.10.1029/JB077i020p03660 Search in Google Scholar

Kaloop, M. R., Pijush, S., Rabah, M., Al-Ajami, H., Hu, J. W., and Zaki, A. (2021). Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height. Survey Review, pages 1–14, doi:10.1080/00396265.2021.1970918.10.1080/00396265.2021.1970918 Search in Google Scholar

Kim, S.-K., Park, J., Gillins, D., and Dennis, M. (2018). On determining orthometric heights from a corrector surface model based on leveling observations, GNSS, and a geoid model. Journal of Applied Geodesy, 12(4):323–333, doi:10.1515/jag-2018-0014.10.1515/jag-2018-0014 Search in Google Scholar

Ligas, M. (2022). Comparison of kriging and least-squares collocation–revisited. Journal of Applied Geodesy, 16(3):217–227, doi:10.1515/jag-2021-0032.10.1515/jag-2021-0032 Search in Google Scholar

Ligas, M. and Szombara, S. (2018). Geostatistical prediction of a local geometric geoid-kriging and cokriging with the use of EGM2008 geopotential model. Studia Geophysica et Geodaetica, 62(2):187–205, doi:10.1007/s11200-017-0713-7.10.1007/s11200-017-0713-7 Search in Google Scholar

Meier, S. (1981). Planar geodetic covariance functions. Reviews of geophysics, 19(4):673–686, doi:10.1029/RG019i004p00673.10.1029/RG019i004p00673 Search in Google Scholar

Moritz, H. (1972). Advanced least-squares methods, volume 175. Ohio State University Research Foundation Columbus, OH, USA. Search in Google Scholar

Orejuela, I. P., González, C. L., Guerra, X. B., Mora, E. C., and Toulkeridis, T. (2021). Geoid undulation modeling through the Cokriging method–A case study of Guayaquil, Ecuador. Geodesy and Geodynamics, 12(5):356–367, doi:10.1016/j.geog.2021.04.004.10.1016/j.geog.2021.04.004 Search in Google Scholar

Radanović, M. and Bašić, T. (2018). Accuracy assessment and comparison of interpolation methods on geoid models. Geodetski Vestnik, 62(1):68–78, doi:10.15292/geodetskivestnik.2018.01.68-78.10.15292/geodetski-vestnik.2018.01.68-78 Search in Google Scholar

Schaffrin, B. (2001). Equivalent systems for various forms of kriging, including least-squares collocation. Zeitschrift für Vermessungswesen, 126(2):87–93. Search in Google Scholar

Tusat, E. and Mikailsoy, F. (2018). An investigation of the criteria used to select the polynomial models employed in local GNSS/leveling geoid determination studies. Arabian journal of geosciences, 11(24):1–15, doi:10.1007/s12517-018-4176-0.10.1007/s12517-018-4176-0 Search in Google Scholar

Wackernagel, H. (2003). Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, doi:10.1007/978-3-662-05294-5.10.1007/978-3-662-05294-5 Search in Google Scholar

You, R.-J. (2006). Local geoid improvement using GPS and leveling data: case study. Journal of Surveying Engineering, 132(3):101–107, doi:10.1061/(ASCE)0733-9453(2006)132:3(101).10.1061/(ASCE)0733-9453(2006)132:3(101) Search in Google Scholar

Zhong, D. (1997). Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71(9):552–561, doi:10.1007/s001900050123.10.1007/s001900050123 Search in Google Scholar

eISSN:
2391-8152
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Informatica, altro, Geoscienze, Geodesia, Cartografia e fotogrametria