This work is licensed under the Creative Commons Attribution 4.0 International License.
Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun 2021; 41: 1183-94. doi: 10.1002/cac2.12207LeiSZhengRZhangSWangSChenRSunKGlobal patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun2021; 41: 1183-94. 10.1002/cac2.12207Open DOISearch in Google Scholar
Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010; 28: 1684-91. doi: 10.1200/JCO.2009.24.9284VoducKDCheangMCTyldesleySGelmonKNielsenTOKenneckeH.Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol2010; 28: 1684-91. 10.1200/JCO.2009.24.9284Open DOISearch in Google Scholar
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-52. doi: 10.1038/35021093PerouCMSørlieTEisenMBvan de RijnMJeffreySSReesCAMolecular portraits of human breast tumours. Nature2000; 406: 747-52. 10.1038/35021093Open DOISearch in Google Scholar
Zhuang L, Lian C, Wang Z, Zhang X, Wu Z, Huang R. Breast-lesion assessment using amide proton transfer-weighted imaging and dynamic contrast-enhanced MR imaging. Radiol Oncol 2023; 57: 446-54. doi: 10.2478/raon-2023-0051ZhuangLLianCWangZZhangXWuZHuangR.Breast-lesion assessment using amide proton transfer-weighted imaging and dynamic contrast-enhanced MR imaging. Radiol Oncol2023; 57: 446-54. 10.2478/raon-2023-0051Open DOISearch in Google Scholar
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes - dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22: 1736-47. doi: 10.1093/annonc/mdr304GoldhirschAWoodWCCoatesASGelberRDThürlimannBSennHJ.Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol2011; 22: 1736-47. 10.1093/annonc/mdr304Open DOISearch in Google Scholar
Tobkes AI, Nord J. Liver biopsy: review of methodology and complications. Dig Dis 1995; 13: 267-74. doi: 10.1159/000121575TobkesAINordJ.Liver biopsy: review of methodology and complications. Dig Dis1995; 13: 267-74. 10.1159/000121575Open DOISearch in Google Scholar
Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010; 1805: 105-17. doi: 10.1016/j.bbcan.2009.11.002MarusykAPolyakK.Tumor heterogeneity: causes and consequences. Biochim Biophys Acta2010; 1805: 105-17. 10.1016/j.bbcan.2009.11.002Open DOISearch in Google Scholar
Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev 2014; 40: 12938. doi: 10.1016/j.ctrv.2013.06.006LamSWJimenezCRBovenE.Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev2014; 40: 12938. 10.1016/j.ctrv.2013.06.006Open DOISearch in Google Scholar
Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: a review. J Magn Reson Imaging 2018; 47: 301-15. doi: 10.1002/jmri.25790MarinoMAHelbichTBaltzerPPinker-DomenigK.Multiparametric MRI of the breast: a review. J Magn Reson Imaging2018; 47: 301-15. 10.1002/jmri.25790Open DOISearch in Google Scholar
Horvat JV, Bernard-Davila B, Helbich TH, Zhang M, Morris EA, Thakur SB, et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. J Magn Reson Imaging 2019; 50: 836-46. doi: 10.1002/jmri.26697HorvatJVBernard-DavilaBHelbichTHZhangMMorrisEAThakurSBDiffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. J Magn Reson Imaging2019; 50: 836-46. 10.1002/jmri.26697Open DOISearch in Google Scholar
Partridge SC, Zhang Z, Newitt DC, Gibbs JE, Chenevert TL, Rosen MA, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology 2018; 289: 618-27. doi: 10.1148/radiol.2018180273PartridgeSCZhangZNewittDCGibbsJEChenevertTLRosenMADiffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology2018; 289: 618-27. 10.1148/radiol.2018180273Open DOISearch in Google Scholar
Jiang X, Li H, Devan SP, Gore JC, Xu J. MR cell size imaging with temporal diffusion spectroscopy. Magn Reson Imaging 2021; 77: 109-23. doi: 10.1016/j. mri.2021.01.006JiangXLiHDevanSPGoreJCXuJ.MR cell size imaging with temporal diffusion spectroscopy. Magn Reson Imaging2021; 77: 109-23. 10.1016/j. mri.2021.01.006Open DOISearch in Google Scholar
Meyer HJ, Wienke A, Surov A. Diffusion-Weighted imaging of different breast cancer molecular subtypes: a systematic review and meta-analysis. Breast Care 2021; 17: 47-54. doi: 10.1159/000514407MeyerHJWienkeASurovA.Diffusion-Weighted imaging of different breast cancer molecular subtypes: a systematic review and meta-analysis. Breast Care2021; 17: 47-54. 10.1159/000514407Open DOISearch in Google Scholar
Gore JC, Xu J, Colvin DC, Yankeelov TE, Parsons EC, Does MD. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed 2010; 23: 745-56. doi: 10.1002/nbm.1531.GoreJCXuJColvinDCYankeelovTEParsonsECDoesMD.Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed2010; 23: 745-56. 10.1002/nbm.1531.Open DOISearch in Google Scholar
Iima M, Yamamoto A, Kataoka M, Yamada Y, Omori K, Feiweier T, et al. Time-dependent diffusion MRI to distinguish malignant from benign head and neck tumors. J Magn Reson Imaging 2019; 50: 88-95. doi: 10.1002/jmri.26578IimaMYamamotoAKataokaMYamadaYOmoriKFeiweierTTime-dependent diffusion MRI to distinguish malignant from benign head and neck tumors. J Magn Reson Imaging2019; 50: 88-95. 10.1002/jmri.26578Open DOISearch in Google Scholar
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, et al. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12: 6523. doi: 10.1038/s41598-022-10081-7SomeyaYIimaMImaiHYoshizawaAKataokaMIsodaHInvestigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep2022; 12: 6523. 10.1038/s41598-022-10081-7Open DOISearch in Google Scholar
Xu J, Jiang X, Li H, Arlinghaus LR, McKinley ET, Devan SP, et al. Magnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med 2020; 83: 2002-14. doi: 10.1002/mrm.28056XuJJiangXLiHArlinghausLRMcKinleyETDevanSPMagnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med2020; 83: 2002-14. 10.1002/mrm.28056Open DOISearch in Google Scholar
Jiang X, Devan SP, Xie J, Gore JC, Xu J. Improving MR cell size imaging by inclusion of transcytolemmal water exchange. NMR Biomed 2022; 35: e4799. doi: 10.1002/nbm.4799JiangXDevanSPXieJGoreJCXuJ.Improving MR cell size imaging by inclusion of transcytolemmal water exchange. NMR Biomed2022; 35: e4799. 10.1002/nbm.4799Open DOISearch in Google Scholar
Shi D, Wang X, Li S, Liu F, Jiang X, Chen L, et al. Comprehensive characterization of tumor therapeutic response with simultaneous mapping cell size, density, and transcytolemmal water exchange. Magnetic Resonance Imaging, 2025; 122: 110433. doi: 10.1016/j.mri.2025.110433ShiDWangXLiSLiuFJiangXChenLComprehensive characterization of tumor therapeutic response with simultaneous mapping cell size, density, and transcytolemmal water exchange. Magnetic Resonance Imaging, 2025; 122: 110433. 10.1016/j.mri.2025.110433Open DOISearch in Google Scholar
Van AT, Holdsworth SJ, Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med 2014; 71: 83-94. doi: 10.1002/mrm.24787VanATHoldsworthSJBammerR.In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med2014; 71: 83-94. 10.1002/mrm.24787Open DOISearch in Google Scholar
Ba R, Wang X, Zhang Z, Li Q, Sun Y, Zhang J, et al. Diffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer. Eur Radiol 2023; 33: 6226-37. doi: 10.1007/s00330-023-09583-yBaRWangXZhangZLiQSunYZhangJDiffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer. Eur Radiol2023; 33: 6226-37. 10.1007/s00330-023-09583-yOpen DOISearch in Google Scholar
Wang X, Ba R, Huang Y, Cao Y, Chen H, Xu H, et al. Time-dependent diffusion MRI helps predict molecular subtypes and treatment response to neoadjuvant chemotherapy in breast cancer. Radiology 2024; 313: e240288. doi: 10.1148/radiol.240288WangXBaRHuangYCaoYChenHXuHTime-dependent diffusion MRI helps predict molecular subtypes and treatment response to neoadjuvant chemotherapy in breast cancer. Radiology2024; 313: e240288. 10.1148/radiol.240288Open DOISearch in Google Scholar
Wu D, Jiang K, Li H, Zhang Z, Ba R, Zhang Y, et al. Time-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer. Radiology 2022; 303: 578-87. doi: 10.1148/radiol.211180WuDJiangKLiHZhangZBaRZhangYTime-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer. Radiology2022; 303: 578-87. 10.1148/radiol.211180Open DOISearch in Google Scholar
Zhang H, Liu K, Ba R, Zhang Z, Zhang Y, Chen Y, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping. Neuro Oncol 2023; 25: 1146-56. doi: 10.1093/neuonc/noad003ZhangHLiuKBaRZhangZZhangYChenYHistological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping. Neuro Oncol2023; 25: 1146-56. 10.1093/neuonc/noad003Open DOISearch in Google Scholar
Jiang X, Li H, Xie J, McKinley ET, Zhao P, Gore JC, et al. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med 2017; 78: 156-64. doi: 10.1002/mrm.26356JiangXLiHXieJMcKinleyETZhaoPGoreJCIn vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med2017; 78: 156-64. 10.1002/mrm.26356Open DOISearch in Google Scholar
Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med 2016; 75: 1076-85. doi: 10.1002/mrm.25684JiangXLiHXieJZhaoPGoreJCXuJ.Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med2016; 75: 1076-85. 10.1002/mrm.25684Open DOISearch in Google Scholar
Li H, Jiang X, Xie J, Gore JC, Xu J. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn Reson Med 2017; 77: 2239-49. doi: 10.1002/mrm.26309LiHJiangXXieJGoreJCXuJ.Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn Reson Med2017; 77: 2239-49. 10.1002/mrm.26309Open DOISearch in Google Scholar
Jiang X, McKinley ET, Xie J, Gore JC, Xu J. Detection of treatment response in triple-negative breast tumors to paclitaxel using MRI cell size imaging. J Magn Reson Imaging 2024; 59: 575-84. doi: 10.1002/jmri.28774JiangXMcKinleyETXieJGoreJCXuJ.Detection of treatment response in triple-negative breast tumors to paclitaxel using MRI cell size imaging. J Magn Reson Imaging2024; 59: 575-84. 10.1002/jmri.28774Open DOISearch in Google Scholar
Xu J, Devan SP, Shi D, Pamulaparthi A, Yan N, Zu Z, et al. MATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a user-friendly GUI. Magn Reson Imaging 2025; 122: 110428. doi: 10.1016/j.mri.2025.110428XuJDevanSPShiDPamulaparthiAYanNZuZMATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a user-friendly GUI. Magn Reson Imaging2025; 122: 110428. 10.1016/j.mri.2025.110428Open DOISearch in Google Scholar
Suo S, Zhang D, Cheng F, Cao M, Hua J, Lu J, et al. Added value of mean and entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of invasive ductal breast cancer with MR imaging. Eur Radiol 2019; 29: 1425-34. doi: 10.1007/s00330-018-5667-9SuoSZhangDChengFCaoMHuaJLuJAdded value of mean and entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of invasive ductal breast cancer with MR imaging. Eur Radiol2019; 29: 1425-34. 10.1007/s00330-018-5667-9Open DOISearch in Google Scholar
Jeh SK, Kim SH, Kim HS, Kang BJ, Jeong SH, Yim HW, et al. Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 2011; 33: 102-9. doi: 10.1002/jmri.22400JehSKKimSHKimHSKangBJJeongSHYimHWCorrelation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging2011; 33: 102-9. 10.1002/jmri.22400Open DOISearch in Google Scholar
Park SH, Choi H-Y, Hahn SY. Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla. J Magn Reson Imaging 2015; 41: 17582. doi: 10.1002/jmri.24519ParkSHChoiH-YHahnSY.Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla. J Magn Reson Imaging2015; 41: 17582. 10.1002/jmri.24519Open DOISearch in Google Scholar
Liu F, Wang M, Li H. Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla. World J Surg Oncol 2018; 16: 239. doi: 10.1186/s12957-018-1538-8LiuFWangMLiH.Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla. World J Surg Oncol2018; 16: 239. 10.1186/s12957-018-1538-8Open DOISearch in Google Scholar
Catalano OA, Horn GL, Signore A, Iannace C, Lepore M, Vangel M, et al. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer 2017; 116: 893-902. doi: 10.1038/bjc.2017.26CatalanoOAHornGLSignoreAIannaceCLeporeMVangelMPET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer2017; 116: 893-902. 10.1038/bjc.2017.26Open DOISearch in Google Scholar
Martincich L, Deantoni V, Bertotto I, Redana S, Kubatzki F, Sarotto I, et al. Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol 2012; 22: 1519-28. doi: 10.1007/s00330-012-2403-8MartincichLDeantoniVBertottoIRedanaSKubatzkiFSarottoICorrelations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol2012; 22: 1519-28. 10.1007/s00330-012-2403-8Open DOISearch in Google Scholar
Shen L, Zhou G, Tong T, Tang F, Lin Y, Zhou J, et al. ADC at 3.0?T as a nonin-vasive biomarker for preoperative prediction of Ki67 expression in invasive ductal carcinoma of breast. Clin Imaging 2018; 52: 16-22. doi: 10.1016/j. clinimag.2018.02.010ShenLZhouGTongTTangFLinYZhouJADC at 3.0?T as a nonin-vasive biomarker for preoperative prediction of Ki67 expression in invasive ductal carcinoma of breast. Clin Imaging2018; 52: 16-22. 10.1016/j. clinimag.2018.02.010Open DOISearch in Google Scholar
Fan M, He T, Zhang P, Cheng H, Zhang J, Gao X, et al. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer. NMR Biomed 2018; 31: e3869. doi: 10.1002/nbm.3869FanMHeTZhangPChengHZhangJGaoXDiffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer. NMR Biomed2018; 31: e3869. 10.1002/nbm.3869Open DOISearch in Google Scholar
Lee YJ, Kim SH, Kang BJ, Kang YJ, Yoo H, Yoo J, et al. Intravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 2017; 45: 1394-406. doi: 10.1002/jmri.25514LeeYJKimSHKangBJKangYJYooHYooJIntravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging2017; 45: 1394-406. 10.1002/jmri.25514Open DOISearch in Google Scholar
Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A, et al. Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology 2018; 287: 432-41. doi: 10.1148/radiol.2017162853IimaMKataokaMKanaoSOnishiNKawaiMOhashiAIntravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology2018; 287: 432-41. 10.1148/radiol.2017162853Open DOISearch in Google Scholar
Iima M, Kataoka M, Honda M, Ohashi A, Kishimoto AO, Ota R, et al. The rate of apparent diffusion coefficient change with diffusion time on breast diffusion-weighted imaging depends on breast tumor types and molecular prognostic biomarker expression. Invest Radiol 2021; 56: 501-8. doi: 10.1097/RLI.0000000000000766IimaMKataokaMHondaMOhashiAKishimotoAOOtaRThe rate of apparent diffusion coefficient change with diffusion time on breast diffusion-weighted imaging depends on breast tumor types and molecular prognostic biomarker expression. Invest Radiol2021; 56: 501-8. 10.1097/RLI.0000000000000766Open DOISearch in Google Scholar
Springer CS. Using 1H2O MR to measure and map sodium pump activity in vivo. J Magn Reson 2018; 291: 110-26. doi: 10.1016/j.jmr.2018.02.018Springer CS. Using 1H2O MR to measure and map sodium pump activity in vivo. J Magn Reson2018; 291: 110-26. 10.1016/j.jmr.2018.02.018Open DOISearch in Google Scholar
Jarque F, Lluch A, Vera FJ, Pascual A, Vizcarra E, Alberola V, et al. Intratumoral variation of estrogen and progesterone receptors in breast cancer: relationship with histopathological characteristics of the tumor. Oncology 2009; 47: 9-13. doi: 10.1159/000226777JarqueFLluchAVeraFJPascualAVizcarraEAlberolaVIntratumoral variation of estrogen and progesterone receptors in breast cancer: relationship with histopathological characteristics of the tumor. Oncology2009; 47: 9-13. 10.1159/000226777Open DOISearch in Google Scholar
Sastre-Garau X, Genin P, Rousseau A, Al Ghuzlan A, Nicolas A, Fréneaux P, et al. Increased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast. Histopathology 2004; 45: 142-7. doi: 10.1111/j.1365-2559.2004.01899.xSastre-GarauXGeninPRousseauAAl GhuzlanANicolasAFréneauxPIncreased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast. Histopathology2004; 45: 142-7. 10.1111/j.1365-2559.2004.01899.xOpen DOISearch in Google Scholar
Lee H-J, Rha SY, Chung YE, Shim HS, Kim YJ, Hur J, et al. Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med 2014; 71: 1554-8. doi: 10.1002/mrm.24810LeeH-JRhaSYChungYEShimHSKimYJHurJTumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med2014; 71: 1554-8. 10.1002/mrm.24810Open DOISearch in Google Scholar