Comparison of 2D and 3D radiomics features with conventional features based on contrast-enhanced CT images for preoperative prediction the risk of thymic epithelial tumors
, , , , , , , e
27 feb 2025
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: research article
Pubblicato online: 27 feb 2025
Pagine: 69 - 78
Ricevuto: 31 lug 2024
Accettato: 27 gen 2025
DOI: https://doi.org/10.2478/raon-2025-0016
Parole chiave
© 2025 Yu-Hang Yuan et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
FIGURE 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Distribution of conventional CT features in training and testing dataset
Testing set | Training set | |||||
---|---|---|---|---|---|---|
Low-risk (n=32) | High-risk (n= 72) | P | Low-risk (n=14) | High-risk (n=31) | P | |
Mean CT value (HU) | 79.5 (68.4, 91.6) | 62.0 (51.0, 78.8) | 88.5 (76.0, 95.1) | 67.0 (59.2, 74.0) | ||
Standard deviation | 18.0 (16.0, 22.6) | 16.5 (14.0, 19.0) | 0.050 | 18.0 (15.9, 26.2) | 17.0 (14.2, 21.6) | 0.548 |
Minimum CT value (HU) | -6.10±30.2 | -8.5±25.0 | 0.678 | -0.7±31.6 | -7.3±17.9 | 0.477 |
Maximum CT value (HU) | 148.5 (131.0, 172.1) | 118.0 (105.5, 138.6) | 162.0 (148.9, 166.1) | 129.0 (105.4, 146.8) | ||
Long diameter (mm) | 50.6±17.0 | 44.1±19.4 | 0.106 | 47.8 (40.9, 57.8) | 38.0 (27.7, 61.3) | 0.198 |
Short diameter (mm) | 34.7 (23.9, 41.7) | 23.2 (17.7, 34.6) | 36.5 (26.0, 45.4) | 25.6 (19.0, 39.3) | 0.073 | |
Vertical diameter (mm) | 48.6 (44.1, 60.2) | 40.4 (29.1, 55.2) | 0.204 | 50.5 (44.4, 63.6) | 38.9 (33.1, 55.1) | 0.059 |
Area (mm2) | 1321.5 (692.0, 1889.8) | 628.5 (397.4, 1409.7) | 1024.0 (747.7, 1623.3) | 651.0 (346.0, 1362.8) | 0.315 | |
Perimeter (mm) | 143.0 (110.8, 167.7) | 112.5 (78.6, 153.8) | 143.5 (118.6, 255.4) | 100.0 (84.1, 194.8) | 0.098 | |
Location | 0.373 | 0.790 | ||||
Right mediastinum | 10 (31.3%) | 33 (45.8%) | 7 (50.0%) | 11 (35.5%) | ||
Middle | 8 (25.0%) | 15 (20.8%) | 1 (7.1%) | 3 (9.7%) | ||
Left mediastinum | 14 (43.8%) | 24 (33.3%) | 6 (42.9%) | 17 (54.8%) | ||
Morphology | ||||||
Lobular | 5 (15.6%) | 10 (13.9%) | 7 (50.0%) | 2 (6.5%) | ||
Shallowly-lobulated | 15 (46.9%) | 14 (19.4%) | 7 (50.0%) | 15 (48.4%) | ||
Non-lobular | 12 (37.5%) | 48 (66.7%) | 0 (0.0%) | 14 (45.2%) | ||
Demarcation | ||||||
Clear | 15 (46.9%) | 17 (23.6%) | 10 (71.4%) | 8 (25.8%) | ||
Unclear | 16 (50.0%) | 43 (59.7%) | 4 (28.6%) | 17 (54.8%) | ||
Infiltration | 1 (3.1%) | 12 (16.7%) | 0 (0%) | 6 (19.4%) | ||
Internal calcification | 8 (25.0%) | 13 (18.1%) | 0.416 | 4 (28.6%) | 9 (29.0%) | 0.746 |
Necrosis | 12 (37.5%) | 20 (27.8%) | 0.321 | 9 (64.3%) | 12 (38.7%) | 0.111 |
Baseline characteristics of the patients in training and testing dataset
Training set | Testing set | |||||
---|---|---|---|---|---|---|
Low-risk (n=32) | High-risk (n= 72) | P | Low-risk (n=14) | High-risk (n=31) | P | |
Age, (Mean ± SD) years | 53.6±11.2 | 52.5±11.4 | 0.656 | 54.0±10.7 | 56.4±8.9 | 0.446 |
Sex (male, No. (%)) | 14 (43.8) | 37 (51.4) | 0.472 | 7 (50.0) | 18 (58.1) | 0.614 |
Myasthenia gravis, No. (%) | 7 (21.9) | 24 (33.3) | 0.238 | 0 (0.0) | 8 (25.8) | 0.094 |
Thoracalgia, No. (%) | 3 (9.4) | 18 (25.0) | 0.067 | 1 (7.1) | 11 (35.5) | 0.104 |
Diagnostic performance of the three models
Model | Training dataset | Testing dataset | ||||
---|---|---|---|---|---|---|
Sensitivity | Specificity | AUC (95%CI) | Sensitivity | Specificity | AUC (95%CI) | |
Conventional models | 77.8% | 87.5% | 0.863(0.786-0.940) | 54.8% | 100.0% | 0.853(0.740-0.965) |
2D radiomics model | 86.1% | 71.9% | 0.854(0.777-0.931) | 77.4% | 85.7% | 0.834(0.714-0.984) |
3D radiomics model | 75.0% | 93.8% | 0.902(0.842-0.963) | 67.7% | 100.0% | 0.906(0.820-0.991) |