This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
D. Stucki et al. (2011). “Long-term performance of the SwissQuantum quantum key distribution network in a field environment”. New Journal of Physics, 13: 12, 123001.StuckiD. (2011). “Long-term performance of the SwissQuantum quantum key distribution network in a field environment”. New Journal of Physics, 13: 12, 123001.Search in Google Scholar
M. Sasaki et al. (2011). “Field test of quantum key distribution in the Tokyo QKD Network”. Optics Express, 19: 11, 10387–10409.SasakiM. (2011). “Field test of quantum key distribution in the Tokyo QKD Network”. Optics Express, 19: 11, 10387–10409.Search in Google Scholar
R. J. Hughes, J. E. Nordholt, K. P. McCabe, R. T. Newell, C. G. Peterson, and R. D. Somma (2013). “Network-centric quantum communications with application to critical infrastructure protection”. arXiv preprint arXiv:1305.0305.HughesR. J.NordholtJ. E.McCabeK. P.NewellR. T.PetersonC. G.SommaR. D. (2013). “Network-centric quantum communications with application to critical infrastructure protection”. arXiv preprint arXiv:1305.0305.Search in Google Scholar
H.-K. Lo, M. Curty, and K. Tamaki (2014). “Secure quantum key distribution”. Nature Photonics, 8: 8, 595–604.LoH.-K.CurtyM.TamakiK. (2014). “Secure quantum key distribution”. Nature Photonics, 8: 8, 595–604.Search in Google Scholar
A. Orieux and E. Diamanti (2016). “Recent advances on integrated quantum communications”. Journal of Optics, 18: 8, 083002.OrieuxA.DiamantiE. (2016). “Recent advances on integrated quantum communications”. Journal of Optics, 18: 8, 083002.Search in Google Scholar
P. Sibson et al. (2017). “Chip-based quantum key distribution”. Nature Communications, 8: 1, 13984.SibsonP. (2017). “Chip-based quantum key distribution”. Nature Communications, 8: 1, 13984.Search in Google Scholar
S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky (2012). “On the genesis and evolution of integrated quantum optics”. Laser & Photonics Reviews, 6: 1, 115–143.TanzilliS.MartinA.KaiserF.De MicheliM. P.AlibartO.OstrowskyD. B. (2012). “On the genesis and evolution of integrated quantum optics”. Laser & Photonics Reviews, 6: 1, 115–143.Search in Google Scholar
P. Zhang et al. (2014). “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client”. Physical Review Letters, 112: 13, 130501.ZhangP. (2014). “Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client”. Physical Review Letters, 112: 13, 130501.Search in Google Scholar
A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien (2008). “Silica-on-silicon waveguide quantum circuits”. Science, 320: 5876, 646–649PolitiA.CryanM. J.RarityJ. G.YuS.O’BrienJ. L. (2008). “Silica-on-silicon waveguide quantum circuits”. Science, 320: 5876, 646–649.Search in Google Scholar
K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao (1996). “Writing waveguides in glass with a femtosecond laser”. Optics Letters, 21: 21, 1729–1731.DavisK. M.MiuraK.SugimotoN.HiraoK. (1996). “Writing waveguides in glass with a femtosecond laser”. Optics Letters, 21: 21, 1729–1731.Search in Google Scholar
J. G. Huang et al. (2017). “Torsional frequency mixing and sensing in optomechanical resonators”. Applied Physics Letters, 111: 11.HuangJ. G. (2017). “Torsional frequency mixing and sensing in optomechanical resonators”. Applied Physics Letters, 111: 11.Search in Google Scholar
Y. Shi et al. (2018). “Nanometer-precision linear sorting with synchronized optofluidic dual barriers”. Science Advances, 4: 1, p. eaao0773.ShiY. (2018). “Nanometer-precision linear sorting with synchronized optofluidic dual barriers”. Science Advances, 4: 1, p. eaao0773.Search in Google Scholar
Y. Z. Shi et al. (2018). “Sculpting nanoparticle dynamics for single-bacteria-level screening and direct bindingefficiency measurement”. Nature Communications, 9: 1, 815.ShiY. Z. (2018). “Sculpting nanoparticle dynamics for single-bacteria-level screening and direct bindingefficiency measurement”. Nature Communications, 9: 1, 815.Search in Google Scholar
A. Boaron et al. (2018). “Secure quantum key distribution over 421 km of optical fiber”. Physical Review Letters, 121: 19, 190502.BoaronA. (2018). “Secure quantum key distribution over 421 km of optical fiber”. Physical Review Letters, 121: 19, 190502.Search in Google Scholar
H.-L. Yin et al. (2016). “Measurement-device-independent quantum key distribution over a 404 km optical fiber”. Physical Review Letters, 117: 19, 190501.YinH.-L. (2016). “Measurement-device-independent quantum key distribution over a 404 km optical fiber”. Physical Review Letters, 117: 19, 190501.Search in Google Scholar
Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng (2017). “Continuous variable quantum key distribution”. Chinese Physics B, 26: 4, 040303.LiY.-M.WangX.-Y.BaiZ.-L.LiuW.-Y.YangS.-S.PengK.-C. (2017). “Continuous variable quantum key distribution”. Chinese Physics B, 26: 4, 040303.Search in Google Scholar
C. H. Bennett and G. Brassard (2014). “Quantum cryptography: Public key distribution and coin tossing”. Theoretical Computer Science, 560: 7–11.BennettC. H.BrassardG. (2014). “Quantum cryptography: Public key distribution and coin tossing”. Theoretical Computer Science, 560: 7–11.Search in Google Scholar
C. H. Bennett (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters, 68: 21, 3121.BennettC. H. (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters, 68: 21, 3121.Search in Google Scholar
A. K. Ekert (1991). “Quantum cryptography and Bell’s theorem”. Quantum Measurements in Optics, 413–418.EkertA. K. (1991). “Quantum cryptography and Bell’s theorem”. Quantum Measurements in Optics, 413–418.Search in Google Scholar
L. Ma et al. (2023). “Practical continuous-variable quantum key distribution with feasible optimization parameters”. Science China Information Sciences, 66: 8, 180507.MaL. (2023). “Practical continuous-variable quantum key distribution with feasible optimization parameters”. Science China Information Sciences, 66: 8, 180507.Search in Google Scholar
S. Sarmiento et al. (2022). “Continuous-variable quantum key distribution over a 15 km multi-core fiber”. New Journal of Physics, 24: 6, 063011.SarmientoS. (2022). “Continuous-variable quantum key distribution over a 15 km multi-core fiber”. New Journal of Physics, 24: 6, 063011.Search in Google Scholar
Y. Zhang, Y. Bian, Z. Li, S. Yu, and H. Guo (2024). “Continuous-variable quantum key distribution system: Past, present, and future”. Applied Physics Reviews, 11: 1.ZhangY.BianY.LiZ.YuS.GuoH. (2024). “Continuous-variable quantum key distribution system: Past, present, and future”. Applied Physics Reviews, 11: 1.Search in Google Scholar
S. Pirandola (2021). “Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks”. Physical Review Research, 3: 4, 043014.PirandolaS. (2021). “Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks”. Physical Review Research, 3: 4, 043014.Search in Google Scholar
N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng (2018). “Long-distance continuous-variable quantum key distribution with entangled states”. Physical Review Applied, 10: 6, 064028.WangN.DuS.LiuW.WangX.LiY.PengK. (2018). “Long-distance continuous-variable quantum key distribution with entangled states”. Physical Review Applied, 10: 6, 064028.Search in Google Scholar
C. Weedbrook et al. (2012). “Gaussian quantum information”. Reviews of Modern Physics, 84: 2, 621–669.WeedbrookC. (2012). “Gaussian quantum information”. Reviews of Modern Physics, 84: 2, 621–669.Search in Google Scholar
G. Adesso, S. Ragy, and A. R. Lee (2014). “Continuous variable quantum information: Gaussian states and beyond”. Open Systems & Information Dynamics, 21: 01n02, 1440001.AdessoG.RagyS.LeeA. R. (2014). “Continuous variable quantum information: Gaussian states and beyond”. Open Systems & Information Dynamics, 21: 01n02, 1440001.Search in Google Scholar
A. Ferraro, S. Olivares, and M. G. Paris (2005). “Gaussian states in continuous variable quantum information”. arXiv preprint quant-ph/0503237.FerraroA.OlivaresS.ParisM. G. (2005). “Gaussian states in continuous variable quantum information”. arXiv preprint quant-ph/0503237.Search in Google Scholar
I. W. Primaatmaja, W. Y. Kon, and C. Lim (2024). “Discrete-modulated continuous-variable quantum key distribution secure against general attacks”. arXiv preprint arXiv:2409.02630.PrimaatmajaI. W.KonW. Y.LimC. (2024). “Discrete-modulated continuous-variable quantum key distribution secure against general attacks”. arXiv preprint arXiv:2409.02630.Search in Google Scholar
N. Alshaer, T. Ismail, and H. Mahmoud (2024). “Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)”. Sensors, 24: 16, 5201.AlshaerN.IsmailT.MahmoudH. (2024). “Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)”. Sensors, 24: 16, 5201.Search in Google Scholar
S. Bäuml, C. Pascual-García, V. Wright, O. Fawzi, and A. Acín (2024). “Security of discrete-modulated continuous-variable quantum key distribution”. Quantum, 8: 1418.BäumlS.Pascual-GarcíaC.WrightV.FawziO.AcínA. (2024). “Security of discrete-modulated continuous-variable quantum key distribution”. Quantum, 8: 1418.Search in Google Scholar
P. Papanastasiou, C. Ottaviani, and S. Pirandola (2021). “Security of continuous-variable quantum key distribution against canonical attacks”, in 2021 International Conference on Computer Communications and Networks (ICCCN): IEEE, 1–6.PapanastasiouP.OttavianiC.PirandolaS. (2021). “Security of continuous-variable quantum key distribution against canonical attacks”, in 2021 International Conference on Computer Communications and Networks (ICCCN): IEEE, 1–6.Search in Google Scholar
A. G. Mountogiannakis, P. Papanastasiou, B. Braverman, and S. Pirandola (2022). “Composably secure data processing for Gaussian-modulated continuous-variable quantum key distribution”. Physical Review Research, 4: 1, 013099.MountogiannakisA. G.PapanastasiouP.BravermanB.PirandolaS. (2022). “Composably secure data processing for Gaussian-modulated continuous-variable quantum key distribution”. Physical Review Research, 4: 1, 013099.Search in Google Scholar
L. d. S. Aguiar, L. F. Borelli, J. A. Roversi, and A. Vidiella-Barranco (2022). “Performance analysis of continuous-variable quantum key distribution using non-Gaussian states”. Quantum Information Processing, 21: 8, 304.AguiarL. d. S.BorelliL. F.RoversiJ. A.Vidiella-BarrancoA. (2022). “Performance analysis of continuous-variable quantum key distribution using non-Gaussian states”. Quantum Information Processing, 21: 8, 304.Search in Google Scholar
N. Hosseinidehaj, A. M. Lance, T. Symul, N. Walk, and T. C. Ralph (2020). “Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection”. Physical Review A, 101: 5, 052335.HosseinidehajN.LanceA. M.SymulT.WalkN.RalphT. C. (2020). “Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection”. Physical Review A, 101: 5, 052335.Search in Google Scholar
N. K. Long, R. Malaney, and K. J. Grant (2022). “A survey of machine learning assisted continuous-variable quantum key distribution”. Information, 14: 10, 553.LongN. K.MalaneyR.GrantK. J. (2022). “A survey of machine learning assisted continuous-variable quantum key distribution”. Information, 14: 10, 553.Search in Google Scholar
H.-M. Chin, N. Jain, D. Zibar, U. L. Andersen, and T. Gehring (2021). “Machine learning aided carrier recovery in continuous-variable quantum key distribution”. npj Quantum Information, 7: 1, 20.ChinH.-M.JainN.ZibarD.AndersenU. L.GehringT. (2021). “Machine learning aided carrier recovery in continuous-variable quantum key distribution”. npj Quantum Information, 7: 1, 20.Search in Google Scholar
Q. Liao, J. Liu, A. Huang, L. Huang, Z. Fei, and X. Fu (2023). “High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning”. arXiv preprint arXiv:2308.03283.LiaoQ.LiuJ.HuangA.HuangL.FeiZ.FuX. (2023). “High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning”. arXiv preprint arXiv:2308.03283.Search in Google Scholar
W.-B. Liu, C.-L. Li, Z.-P. Liu, M.-G. Zhou, H.-L. Yin, and Z.-B. Chen (2022). “Theoretical development of discrete-modulated continuous-variable quantum key distribution”. (in English), Frontiers in Quantum Science and Technology, Mini Review, 1: 985276, doi: 10.3389/frqst.2022.985276.LiuW.-B.LiC.-L.LiuZ.-P.ZhouM.-G.YinH.-L.ChenZ.-B. (2022). “Theoretical development of discrete-modulated continuous-variable quantum key distribution”. (in English), Frontiers in Quantum Science and Technology, Mini Review, 1: 985276, 10.3389/frqst.2022.985276.Open DOISearch in Google Scholar
Y. Yan et al. (2023). “Artificial key fingerprints for continuous-variable quantum key distribution”. Physical Review A, 108: 1, 012601, doi: 10.1103/PhysRevA.108.012601.YanY. (2023). “Artificial key fingerprints for continuous-variable quantum key distribution”. Physical Review A, 108: 1, 012601, 10.1103/PhysRevA.108.012601.Open DOISearch in Google Scholar
C. Ding, S. Wang, Y. Wang, Z. Wu, J. Sun, and Y. Mao (2023). “Machine-learning-based detection for quantum hacking attacks on continuous-variable quantum-key-distribution systems”. Physical Review A, 107: 6, 062422, doi: 10.1103/PhysRevA.107.062422.DingC.WangS.WangY.WuZ.SunJ.MaoY. (2023). “Machine-learning-based detection for quantum hacking attacks on continuous-variable quantum-key-distribution systems”. Physical Review A, 107: 6, 062422, 10.1103/PhysRevA.107.062422.Open DOISearch in Google Scholar
D. F. Walls (1983). “Squeezed states of light”. Nature, 306: 5939, 141–146.WallsD. F. (1983). “Squeezed states of light”. Nature, 306: 5939, 141–146.Search in Google Scholar
H. Lin and Y. Shang (2024). “Deterministic search on complete bipartite graphs by continuous time quantum walk”. arXiv preprint arXiv:2404.01640.LinH.ShangY. (2024). “Deterministic search on complete bipartite graphs by continuous time quantum walk”. arXiv preprint arXiv:2404.01640.Search in Google Scholar
B. Zhang and Q. Zhuang (2021). “Entanglement formation in continuous-variable random quantum networks”. npj Quantum Information, 7: 1, 33.ZhangB.ZhuangQ. (2021). “Entanglement formation in continuous-variable random quantum networks”. npj Quantum Information, 7: 1, 33.Search in Google Scholar
C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and I. Jex (2017). “Gaussian boson sampling”. Physical Review Letters, 119: 17, 170501.HamiltonC. S.KruseR.SansoniL.BarkhofenS.SilberhornC.JexI. (2017). “Gaussian boson sampling”. Physical Review Letters, 119: 17, 170501.Search in Google Scholar
H.-S. Zhong et al. (2020). “Quantum computational advantage using photons”. Science, 370: 6523, 1460–1463.ZhongH.-S. (2020). “Quantum computational advantage using photons”. Science, 370: 6523, 1460–1463.Search in Google Scholar
H.-S. Zhong et al. (2021). “Phase-programmable gaussian boson sampling using stimulated squeezed light”. Physical Review Letters, 127: 18, 180502.ZhongH.-S. (2021). “Phase-programmable gaussian boson sampling using stimulated squeezed light”. Physical Review Letters, 127: 18, 180502.Search in Google Scholar
A. Czerwinski (2024). “Quantum state tomography of photonic qubits with realistic coherent light sources”. Quantum Information & Computation, 24: 31–39.CzerwinskiA. (2024). “Quantum state tomography of photonic qubits with realistic coherent light sources”. Quantum Information & Computation, 24: 31–39.Search in Google Scholar
R. Schnabel (2017). “Squeezed states of light and their applications in laser interferometers”. Physics Reports, 684: 1–51.SchnabelR. (2017). “Squeezed states of light and their applications in laser interferometers”. Physics Reports, 684: 1–51.Search in Google Scholar
H. Vahlbruch et al. (2008). “Observation of squeezed light with 10–dB quantum-noise reduction”. Physical Review Letters, 100: 3, 033602.VahlbruchH. (2008). “Observation of squeezed light with 10–dB quantum-noise reduction”. Physical Review Letters, 100: 3, 033602.Search in Google Scholar
H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel (2016). “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency”. Physical Review Letters, 117: 11, 110801.VahlbruchH.MehmetM.DanzmannK.SchnabelR. (2016). “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency”. Physical Review Letters, 117: 11, 110801.Search in Google Scholar
S. Du and Z. Bai (2024). “State convertibility under genuinely incoherent operations”. Quantum Information & Computation, 24: 17–30.DuS.BaiZ. (2024). “State convertibility under genuinely incoherent operations”. Quantum Information & Computation, 24: 17–30.Search in Google Scholar
S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola (2015). “Microwave quantum illumination”. Physical Review Letters, 114: 8, 080503.BarzanjehS.GuhaS.WeedbrookC.VitaliD.ShapiroJ. H.PirandolaS. (2015). “Microwave quantum illumination”. Physical Review Letters, 114: 8, 080503.Search in Google Scholar
H. Wang et al. (2020). “Observation of intensity squeezing in resonance fluorescence from a solid-state device”. Physical Review Letters, 125: 15, 153601.WangH. (2020). “Observation of intensity squeezing in resonance fluorescence from a solid-state device”. Physical Review Letters, 125: 15, 153601.Search in Google Scholar
M. Sabatini, T. Bertapelle, P. Villoresi, G. Vallone, and M. Avesani (2024), “Hybrid encoder for discrete and continuous variable QKD”. arXiv preprint arXiv:2408.17412.SabatiniM.BertapelleT.VilloresiP.ValloneG.AvesaniM. (2024), “Hybrid encoder for discrete and continuous variable QKD”. arXiv preprint arXiv:2408.17412.Search in Google Scholar
R. Loudon and P. L. Knight (1987). “Squeezed light”. Journal of Modern Optics, 34: 6–7, 709–759.LoudonR.KnightP. L. (1987). “Squeezed light”. Journal of Modern Optics, 34: 6–7, 709–759.Search in Google Scholar
A. I. Lvovsky (2015). “Squeezed light”. Photonics: Scientific Foundations, Technology and Applications, 1: 121–163.LvovskyA. I. (2015). “Squeezed light”. Photonics: Scientific Foundations, Technology and Applications, 1: 121–163.Search in Google Scholar
B. E. Saleh and M. C. Teich (2019). Fundamentals of Photonics. John Wiley & Sons.SalehB. E.TeichM. C. (2019). Fundamentals of Photonics. John Wiley & Sons.Search in Google Scholar
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger (1997). “Experimental quantum teleportation”. Nature, 390: 6660, 575–579.BouwmeesterD.PanJ.-W.MattleK.EiblM.WeinfurterH.ZeilingerA. (1997). “Experimental quantum teleportation”. Nature, 390: 6660, 575–579.Search in Google Scholar
M. B. Plenio and S. Virmani (2005). “An introduction to entanglement measures”. arXiv preprint quant-ph/0504163.PlenioM. B.VirmaniS. (2005). “An introduction to entanglement measures”. arXiv preprint quant-ph/0504163.Search in Google Scholar
M. Motaharifar, H. Kaatuzian, and M. Hasani (2023). “Possible teleportation of quantum states using squeezed sources and photonic integrated circuits”, in 2023 5th Iranian International Conference on Microelectronics (IICM), IEEE, 227–232.MotaharifarM.KaatuzianH.HasaniM. (2023). “Possible teleportation of quantum states using squeezed sources and photonic integrated circuits”, in 2023 5th Iranian International Conference on Microelectronics (IICM), IEEE, 227–232.Search in Google Scholar
L. Albano, D. Mundarain, and J. Stephany (2002). “On the squeezed number states and their phase space representations”. Journal of Optics B: Quantum and Semiclassical Optics, 4: 5, 352.AlbanoL.MundarainD.StephanyJ. (2002). “On the squeezed number states and their phase space representations”. Journal of Optics B: Quantum and Semiclassical Optics, 4: 5, 352.Search in Google Scholar
M. A. Nielsen and I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.NielsenM. A.ChuangI. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.Search in Google Scholar
M. Motaharifar and H. Kaatuzian (2023). “Mach-Zehnder interferometer cell for realization of quantum computer; a feasibility study”, in 2023 31st International Conference on Electrical Engineering (ICEE). IEEE, 762–767.MotaharifarM.KaatuzianH. (2023). “Mach-Zehnder interferometer cell for realization of quantum computer; a feasibility study”, in 2023 31st International Conference on Electrical Engineering (ICEE). IEEE, 762–767.Search in Google Scholar
D. Dai and J. E. Bowers (2011). “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler”. Optics Express, 19: 19, 18614–18620.DaiD.BowersJ. E. (2011). “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler”. Optics Express, 19: 19, 18614–18620.Search in Google Scholar
J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers (2013). “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler”. Optics Letters, 38: 1, 4–6.WangJ.LiangD.TangY.DaiD.BowersJ. E. (2013). “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler”. Optics Letters, 38: 1, 4–6.Search in Google Scholar
T. C. Ralph (1999). “Continuous variable quantum cryptography”. Physical Review A, 61: 1, 010303.RalphT. C. (1999). “Continuous variable quantum cryptography”. Physical Review A, 61: 1, 010303.Search in Google Scholar
M. Hillery (2000). “Quantum cryptography with squeezed states”. Physical Review A, 61: 2, 022309.HilleryM. (2000). “Quantum cryptography with squeezed states”. Physical Review A, 61: 2, 022309.Search in Google Scholar
M. D. Reid (2000). “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations”. Physical Review A, 62: 6, 062308.ReidM. D. (2000). “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations”. Physical Review A, 62: 6, 062308.Search in Google Scholar
N. J. Cerf, M. Levy, and G. Van Assche (2001). “Quantum distribution of Gaussian keys using squeezed states”. Physical Review A, 63: 5, 052311.CerfN. J.LevyM.Van AsscheG. (2001). “Quantum distribution of Gaussian keys using squeezed states”. Physical Review A, 63: 5, 052311.Search in Google Scholar
D. Gottesman and J. Preskill (2003). Quantum Information with Continuous Variables. Springer Dordrecht.GottesmanD.PreskillJ. (2003). Quantum Information with Continuous Variables. Springer Dordrecht.Search in Google Scholar
F. Grosshans and P. Grangier (2002). “Continuous variable quantum cryptography using coherent states”. Physical Review Letters, 88: 5, 057902.GrosshansF.GrangierP. (2002). “Continuous variable quantum cryptography using coherent states”. Physical Review Letters, 88: 5, 057902.Search in Google Scholar
A. Leverrier and P. Grangier (2009). “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation”. Physical Review Letters, 102: 18, 180504.LeverrierA.GrangierP. (2009). “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation”. Physical Review Letters, 102: 18, 180504.Search in Google Scholar
X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng (2009). “Continuous variable quantum key distribution based on optical entangled states without signal modulation”. Europhysics Letters, 87: 2, 20005.SuX.WangW.WangY.JiaX.XieC.PengK. (2009). “Continuous variable quantum key distribution based on optical entangled states without signal modulation”. Europhysics Letters, 87: 2, 20005.Search in Google Scholar
A. Denys, P. Brown, and A. Leverrier (2021). “Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation”. Quantum, 5: 540.DenysA.BrownP.LeverrierA. (2021). “Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation”. Quantum, 5: 540.Search in Google Scholar
L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen (2012). “Continuous variable quantum key distribution with modulated entangled states”. Nature Communications, 3: 1, 1083.MadsenL. S.UsenkoV. C.LassenM.FilipR.AndersenU. L. (2012). “Continuous variable quantum key distribution with modulated entangled states”. Nature Communications, 3: 1, 1083.Search in Google Scholar
V. C. Usenko and R. Filip (2011). “Squeezed-state quantum key distribution upon imperfect reconciliation”. New Journal of Physics, 13: 11, 113007.UsenkoV. C.FilipR. (2011). “Squeezed-state quantum key distribution upon imperfect reconciliation”. New Journal of Physics, 13: 11, 113007.Search in Google Scholar
C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam (2004). “Quantum cryptography without switching”. Physical Review Letters, 93: 17, 170504.WeedbrookC.LanceA. M.BowenW. P.SymulT.RalphT. C.LamP. K. (2004). “Quantum cryptography without switching”. Physical Review Letters, 93: 17, 170504.Search in Google Scholar
A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam (2005). “No-switching quantum key distribution using broadband modulated coherent light”. Physical Review Letters, 95: 18, 80503.LanceA. M.SymulT.SharmaV.WeedbrookC.RalphT. C.LamP. K. (2005). “No-switching quantum key distribution using broadband modulated coherent light”. Physical Review Letters, 95: 18, 80503.Search in Google Scholar
R. García-Patrón and N. J. Cerf (2009). “Continuous-variable quantum key distribution protocols over noisy channels”. Physical Review Letters, 102: 13, 130501.García-PatrónR.CerfN. J. (2009). “Continuous-variable quantum key distribution protocols over noisy channels”. Physical Review Letters, 102: 13, 130501.Search in Google Scholar
J. Lodewyck et al. (2007). “Quantum key distribution over 25 km with an all-fiber continuous-variable system”. Physical Review A—Atomic, Molecular, and Optical Physics, 76: 4, 042305.LodewyckJ. (2007). “Quantum key distribution over 25 km with an all-fiber continuous-variable system”. Physical Review A—Atomic, Molecular, and Optical Physics, 76: 4, 042305.Search in Google Scholar
F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier (2003). “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables”. arXiv preprint quant-ph/0306141GrosshansF.CerfN. J.WengerJ.Tualle-BrouriR.GrangierP. (2003). “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables”. arXiv preprint quant-ph/0306141.Search in Google Scholar
G. Roberts et al. (2018). “Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution”. Optics Letters, 43: 20, 5110–5113.RobertsG. (2018). “Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution”. Optics Letters, 43: 20, 5110–5113.Search in Google Scholar
H.-K. Lo, M. Curty, and B. Qi (2012). “Measurement-device-independent quantum key distribution”. Physical Review Letters, 108: 13, 130503, doi: 10.1103/PhysRevLett.108.130503.LoH.-K.CurtyM.QiB. (2012). “Measurement-device-independent quantum key distribution”. Physical Review Letters, 108: 13, 130503, 10.1103/PhysRevLett.108.130503.Open DOISearch in Google Scholar
Y. Ding et al. (2017). “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits”. npj Quantum Information, 3: 1, 25.DingY. (2017). “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits”. npj Quantum Information, 3: 1, 25.Search in Google Scholar
C. Ma et al. (2016). “Silicon photonic transmitter for polarization-encoded quantum key distribution”. Optica, 3: 11, 1274–1278.MaC. (2016). “Silicon photonic transmitter for polarization-encoded quantum key distribution”. Optica, 3: 11, 1274–1278.Search in Google Scholar
P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson (2017). “Integrated silicon photonics for high-speed quantum key distribution”. Optica, 4: 2, 172–177.SibsonP.KennardJ. E.StanisicS.ErvenC.O’BrienJ. L.ThompsonM. G. (2017). “Integrated silicon photonics for high-speed quantum key distribution”. Optica, 4: 2, 172–177.Search in Google Scholar
F. Najafi et al. (2015). “On-chip detection of non-classical light by scalable integration of single-photon detectors”. Nature Communications, 6: 1, 5873.NajafiF. (2015). “On-chip detection of non-classical light by scalable integration of single-photon detectors”. Nature Communications, 6: 1, 5873.Search in Google Scholar
W. H. Pernice et al. (2012). “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits”. Nature Communications, 3: 1, 1325.PerniceW. H. (2012). “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits”. Nature Communications, 3: 1, 1325.Search in Google Scholar
M. Ziebell et al. (2015). “Towards on-chip continuous-variable quantum key distribution”, in The European Conference on Lasers and Electro-Optics. Optica Publishing Group.ZiebellM. (2015). “Towards on-chip continuous-variable quantum key distribution”, in The European Conference on Lasers and Electro-Optics. Optica Publishing Group.Search in Google Scholar
P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti (2013). “Experimental demonstration of long-distance continuous-variable quantum key distribution”. Nature Photonics, 7: 5, 378–381.JouguetP.Kunz-JacquesS.LeverrierA.GrangierP.DiamantiE. (2013). “Experimental demonstration of long-distance continuous-variable quantum key distribution”. Nature Photonics, 7: 5, 378–381.Search in Google Scholar
D. Huang, P. Huang, D. Lin, and G. Zeng (2016). “Long-distance continuous-variable quantum key distribution by controlling excess noise”. Scientific Reports, 6: 1, 19201.HuangD.HuangP.LinD.ZengG. (2016). “Long-distance continuous-variable quantum key distribution by controlling excess noise”. Scientific Reports, 6: 1, 19201.Search in Google Scholar
F. Raffaelli et al. (2018). “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers”. Quantum Science and Technology, 3: 2, 025003.RaffaelliF. (2018). “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers”. Quantum Science and Technology, 3: 2, 025003.Search in Google Scholar
M. Rudé et al. (2018). “Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources”. Optics Express, 26: 24, 31957–31964.RudéM. (2018). “Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources”. Optics Express, 26: 24, 31957–31964.Search in Google Scholar
F. Raffaelli, P. Sibson, J. E. Kennard, D. H. Mahler, M. G. Thompson, and J. C. Matthews (2018). “Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip”. Optics Express, 26: 16, 19730–19741.RaffaelliF.SibsonP.KennardJ. E.MahlerD. H.ThompsonM. G.MatthewsJ. C. (2018). “Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip”. Optics Express, 26: 16, 19730–19741.Search in Google Scholar
C. Abellan et al. (2016). “Quantum entropy source on an InP photonic integrated circuit for random number generation”. Optica, 3: 9, 989–994.AbellanC. (2016). “Quantum entropy source on an InP photonic integrated circuit for random number generation”. Optica, 3: 9, 989–994.Search in Google Scholar
P. Kaur, A. Boes, G. Ren, T. G. Nguyen, G. Roelkens, and A. Mitchell, (2021). “Hybrid and heterogeneous photonic integration”. APL Photonics, 6, 6.KaurP.BoesA.RenG.NguyenT. G.RoelkensG.MitchellA. (2021). “Hybrid and heterogeneous photonic integration”. APL Photonics, 6, 6.Search in Google Scholar
K. Jaksch et al. (2024). “Composable free-space continuous-variable quantum key distribution using discrete modulation”. arXiv preprint arXiv:2410.12915.JakschK. (2024). “Composable free-space continuous-variable quantum key distribution using discrete modulation”. arXiv preprint arXiv:2410.12915.Search in Google Scholar
Y. Xu et al. (2021). “Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements”. Scientific Reports, 11: 1, 16426.XuY. (2021). “Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements”. Scientific Reports, 11: 1, 16426.Search in Google Scholar
C. Koos et al. (2013). “Photonic wire bonding: An enabling technology for heterogeneous multi-chip integration”, in Integrated Photonics Research, Silicon and Nanophotonics. Optica Publishing Group.KoosC. (2013). “Photonic wire bonding: An enabling technology for heterogeneous multi-chip integration”, in Integrated Photonics Research, Silicon and Nanophotonics. Optica Publishing Group.Search in Google Scholar
M. Hasani, H. Kaatuzian, and M. Motaharifar, (2023). “Stochastic mass-spring model for the generation of squeezed state of light”, in Laser Science. Optica Publishing Group.HasaniM.KaatuzianH.MotaharifarM. (2023). “Stochastic mass-spring model for the generation of squeezed state of light”, in Laser Science. Optica Publishing Group.Search in Google Scholar
S. Zhao et al. (2024). “Broadband amplitude squeezing at room temperature in electrically driven quantum dot lasers”. Physical Review Research, 6: 3, L032021.ZhaoS. (2024). “Broadband amplitude squeezing at room temperature in electrically driven quantum dot lasers”. Physical Review Research, 6: 3, L032021.Search in Google Scholar
M. Hasani and M. Motaharifar, (2024). “Experimental realization of spontaneous parametric down conversion”.HasaniM.MotaharifarM. (2024). “Experimental realization of spontaneous parametric down conversion”.Search in Google Scholar
M. Rabiei, H. Kaatuzian, M. Hasani, and A. Shircharandabi, (2024). “Analysis of squeezed light generation via SFWM in a Si3N4microring resonator”, in Frontiers in Optics. Optica Publishing Group.RabieiM.KaatuzianH.HasaniM.ShircharandabiA. (2024). “Analysis of squeezed light generation via SFWM in a Si3N4microring resonator”, in Frontiers in Optics. Optica Publishing Group.Search in Google Scholar
A. Shircharandabi, H. Kaatuzian, M. Hasani, and M. Rabiei, (2024). “Investigation of squeezed-state generation using SFWM in a SiO2 microring resonator”, in Laser Science. Optica Publishing Group.ShircharandabiA.KaatuzianH.HasaniM.RabieiM. (2024). “Investigation of squeezed-state generation using SFWM in a SiO2 microring resonator”, in Laser Science. Optica Publishing Group.Search in Google Scholar
E. Engin et al. (2013). “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement”. Optics Express, 21: 23, 27826–27834.EnginE. (2013). “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement”. Optics Express, 21: 23, 27826–27834.Search in Google Scholar
J. M. Arrazola et al. (2021). “Quantum circuits with many photons on a programmable nanophotonic chip”. Nature, 591: 7848, 54–60.ArrazolaJ. M. (2021). “Quantum circuits with many photons on a programmable nanophotonic chip”. Nature, 591: 7848, 54–60.Search in Google Scholar
M. A. Broome et al. (2013). “Photonic boson sampling in a tunable circuit”. Science, 339: 6121, 794–798.BroomeM. A. (2013). “Photonic boson sampling in a tunable circuit”. Science, 339: 6121, 794–798.Search in Google Scholar
A. Molina and J. Watrous, (2019). “Revisiting the simulation of quantum Turing machines by quantum circuits”. Proceedings of the Royal Society A, 475: 2226, 20180767.MolinaA.WatrousJ. (2019). “Revisiting the simulation of quantum Turing machines by quantum circuits”. Proceedings of the Royal Society A, 475: 2226, 20180767.Search in Google Scholar
R. Nagai, T. Tomono, and Y. Minato, (2021). “Simulation of Continuous-Variable Quantum Systems with Tensor Network”. in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 437–438.NagaiR.TomonoT.MinatoY. (2021). “Simulation of Continuous-Variable Quantum Systems with Tensor Network”. in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 437–438.Search in Google Scholar
Q. Zhang, H. Lai, J. Pieprzyk, and L. Pan, (2022). “An improved quantum network communication model based on compressed tensor network states”. Quantum Information Processing, 21: 7, 253.ZhangQ.LaiH.PieprzykJ.PanL. (2022). “An improved quantum network communication model based on compressed tensor network states”. Quantum Information Processing, 21: 7, 253.Search in Google Scholar
Q. Zhang, H. Lai, and J. Pieprzyk, (2022). “Quantum-key-expansion protocol based on number-stateentanglement-preserving tensor network with compression”. Physical Review A, 105: 3, 032439.ZhangQ.LaiH.PieprzykJ. (2022). “Quantum-key-expansion protocol based on number-stateentanglement-preserving tensor network with compression”. Physical Review A, 105: 3, 032439.Search in Google Scholar
A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, (2013). “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks”. Physical Review Letters, 111: 13, 130501, doi: 10.1103/PhysRevLett.111.130501.RubenokA.SlaterJ. A.ChanP.Lucio-MartinezI.TittelW. (2013). “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks”. Physical Review Letters, 111: 13, 130501, 10.1103/PhysRevLett.111.130501.Open DOISearch in Google Scholar
T. Li, Z. Gao, and Z. Li, (2020). “Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator”. Europhysics Letters, 131: 6, 60001.LiT.GaoZ.LiZ. (2020). “Measurement-device–independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator”. Europhysics Letters, 131: 6, 60001.Search in Google Scholar
Y. Cao et al. (2020). “Long-distance free-space measurement-device-independent quantum key distribution”. Physical Review Letters, 125: 26, 260503.CaoY. (2020). “Long-distance free-space measurement-device-independent quantum key distribution”. Physical Review Letters, 125: 26, 260503.Search in Google Scholar
Y.-H. Li et al. (2023). “Free-space and fiber-integrated measurement-device-independent quantum key distribution under high background noise”. Physical Review Letters, 131: 10, 100802.LiY.-H. (2023). “Free-space and fiber-integrated measurement-device-independent quantum key distribution under high background noise”. Physical Review Letters, 131: 10, 100802.Search in Google Scholar
L. Cao et al. (2020). “Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems”. Physical Review Applied, 14: 1, 011001.CaoL. (2020). “Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems”. Physical Review Applied, 14: 1, 011001.Search in Google Scholar
Q. Liao, Y. Wang, D. Huang, and Y. Guo, (2018). “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution”. Optics Express, 26: 16, 19907–19920.LiaoQ.WangY.HuangD.GuoY. (2018). “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution”. Optics Express, 26: 16, 19907–19920.Search in Google Scholar
P. Wang, Y. Tian, and Y. Li, (2025). “Advances in continuous variable measurement-device-independent quantum key distribution”. arXiv preprint arXiv:2502.16448.WangP.TianY.LiY. (2025). “Advances in continuous variable measurement-device-independent quantum key distribution”. arXiv preprint arXiv:2502.16448.Search in Google Scholar
Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, (2014). “Continuous-variable measurementdevice-independent quantum key distribution using squeezed states”. Physical Review A,. 90: 5, 052325, doi: 10.1103/PhysRevA.90.052325.ZhangY.-C.LiZ.YuS.GuW.PengX.GuoH. (2014). “Continuous-variable measurementdevice-independent quantum key distribution using squeezed states”. Physical Review A,. 90: 5, 052325, 10.1103/PhysRevA.90.052325.Open DOISearch in Google Scholar
L. Fan, Y. Bian, Y. Zhang, and S. Yu, (2022). “Free-space continuous-variable quantum key distribution with imperfect detector against uniform fast-fading channels”. Symmetry, 14: 6, 1271. https://www.mdpi.com/2073-8994/14/6/1271.FanL.BianY.ZhangY.YuS. (2022). “Free-space continuous-variable quantum key distribution with imperfect detector against uniform fast-fading channels”. Symmetry, 14: 6, 1271. https://www.mdpi.com/2073-8994/14/6/1271.Search in Google Scholar
L. Ruppert et al. (2019). “Fading channel estimation for free-space continuous-variable secure quantum communication”. New Journal of Physics, 21: 12, 123036.RuppertL. (2019). “Fading channel estimation for free-space continuous-variable secure quantum communication”. New Journal of Physics, 21: 12, 123036.Search in Google Scholar
R. Zhao, J. Zhou, R. Shi, and J. Shi, (2024). “Unidimensional continuous variable quantum key distribution under fast fading channel”. Annalen der Physik, 536: 5, 2300401.ZhaoR.ZhouJ.ShiR.ShiJ. (2024). “Unidimensional continuous variable quantum key distribution under fast fading channel”. Annalen der Physik, 536: 5, 2300401.Search in Google Scholar
F. Yang, D. Qiu, and P. Mateus, (2023). “Continuous-variable quantum secret sharing in fast-fluctuating channels”. IEEE Transactions on Quantum Engineering, 4: 1–9.YangF.QiuD.MateusP. (2023). “Continuous-variable quantum secret sharing in fast-fluctuating channels”. IEEE Transactions on Quantum Engineering, 4: 1–9.Search in Google Scholar
P. Papanastasiou, C. Weedbrook, and S. Pirandola, (2018). “Continuous-variable quantum key distribution in uniform fast-fading channels”. Physical Review A, 97: 3, 032311, doi: 10.1103/PhysRevA.97.032311.PapanastasiouP.WeedbrookC.PirandolaS. (2018). “Continuous-variable quantum key distribution in uniform fast-fading channels”. Physical Review A, 97: 3, 032311, 10.1103/PhysRevA.97.032311.Open DOISearch in Google Scholar
S. Pirandola et al. (2015). “MDI-QKD: Continuous-versus discrete-variables at metropolitan distances”. arXiv preprint arXiv:1506.06748.PirandolaS. (2015). “MDI-QKD: Continuous-versus discrete-variables at metropolitan distances”. arXiv preprint arXiv:1506.06748.Search in Google Scholar
P. Wang, X. Wang, and Y. Li, (2019). “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers”. Physical Review A, 99: 4, 042309, doi: 10.1103/PhysRevA.99.042309.WangP.WangX.LiY. (2019). “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers”. Physical Review A, 99: 4, 042309, 10.1103/PhysRevA.99.042309.Open DOISearch in Google Scholar
E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, (2016). “Practical challenges in quantum key distribution”. npj Quantum Information, 2: 1, 1–12.DiamantiE.LoH.-K.QiB.YuanZ. (2016). “Practical challenges in quantum key distribution”. npj Quantum Information, 2: 1, 1–12.Search in Google Scholar
C. M. Knaut et al. (2024). “Entanglement of nanophotonic quantum memory nodes in a telecom network”. Nature, 629: 8012, 573–578.KnautC. M. (2024). “Entanglement of nanophotonic quantum memory nodes in a telecom network”. Nature, 629: 8012, 573–578.Search in Google Scholar
É. Dumur et al. (2021). “Quantum communication with itinerant surface acoustic wave phonons”. npj Quantum Information, 7: 1, 173.DumurÉ. (2021). “Quantum communication with itinerant surface acoustic wave phonons”. npj Quantum Information, 7: 1, 173.Search in Google Scholar
R. Yanagimoto, P. L. McMahon, E. Ng, T. Onodera, and H. Mabuchi, (2019). “Embedding entanglement generation within a measurement-feedback coherent Ising machine”. arXiv preprint arXiv:1906.04902.YanagimotoR.McMahonP. L.NgE.OnoderaT.MabuchiH. (2019). “Embedding entanglement generation within a measurement-feedback coherent Ising machine”. arXiv preprint arXiv:1906.04902.Search in Google Scholar
Y. Inui and Y. Yamamoto, (2020). “Entanglement and quantum discord in optically coupled coherent Ising machines”. Physical Review A, 102: 6, 062419.InuiY.YamamotoY. (2020). “Entanglement and quantum discord in optically coupled coherent Ising machines”. Physical Review A, 102: 6, 062419.Search in Google Scholar