Accesso libero

How Alcohol Damages Brain Development in Children

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Mewton L, Lees B, Rao RT. Lifetime perspective on alcohol and brain health. BMJ. 2020 Dec 3;371:m4691. doi: 10.1136/bmj.m4691. PMID: 33272963.33272963 Open DOISearch in Google Scholar

2. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) (2018) Search in Google Scholar

3. CDC. Fetal alcohol syndrome-Alaska, Arizona, Colorado, and New York, 1995-1997. MMWR Morb Mortal Wkly Rep. 2002; 51(20): 433–5. Search in Google Scholar

4. CDC. Fetal Alcohol Syndrome Among Children Aged 7-9 Years – Arizona, Colorado, and New York, 2010. MMWR Morb Mortal Wkly Rep. 2015; 64(3): 54–57. Search in Google Scholar

5. May PA, Baete A, Russo J, Elliott AJ, Blankenship J, Kalberg WO, Buckley D, Brooks M, Hasken J, Abdul-Rahman O, Adam MP, Robinson LK, Manning M, Hoyme HE. Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics. 2014; 134: 855–66.10.1542/peds.2013-3319421079025349310 Search in Google Scholar

6. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, Hoyme HE. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev. 2009; 15: 176–92.10.1002/ddrr.6819731384 Search in Google Scholar

7. May PA, Chambers CD, Kalberg WO, Zellner J, Feldman H, Buckley D, Kopald D, Hasken JM, Xu R, Honerkamp-Smith G, Taras H, Manning MA, Robinson LK, Adam MP, Abdul-Rahman O, Vaux K, Jewett T, Elliott AJ, Kable JA, Akshoomoff N, Falk D, Arroyo JA, Hereld D, Riley EP, Charness ME, Coles CD, Warren KR, Jones KL, Hoyme HE. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. Journal of American Medical Association. 2018; 319(5): 474–48210.1001/jama.2017.21896583929829411031 Search in Google Scholar

8. Krulewitch CJ. Alcohol consumption during pregnancy. Annual Review of Nursing Research. 2005; 23: 101–134.10.1891/0739-6686.23.1.101 Search in Google Scholar

9. Gao, L. et al. Granger causal time-dependent source connectivity in the somatosensory network. Sci. Rep. 2015; 5, 10399;10.1038/srep10399444101025997414 Search in Google Scholar

10. Hashimoto JG, Wiren KM, Wilhelm CJ. A neurotoxic alcohol exposure paradigm does not induce hepatic encephalopathy. Neurotoxicol Teratol. 2016 Jul-Aug; 56: 35–40.10.1016/j.ntt.2016.06.001493989827268733 Search in Google Scholar

11. Basavarajappa BS. Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sciences. 2015; 5(4): 456–493.10.3390/brainsci5040456470102326529026 Search in Google Scholar

12. Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychology Review. 2021 Sep; 31(3): 447–47110.1007/s11065-020-09450-8787858432789537 Search in Google Scholar

13. Burger PH, Goecke TW, Fasching PA, Moll G, Heinrich H, Beckmann MW, Kornhuber J. Einfluss des mütterlichen Alkoholkonsums während der Schwangerschaft auf die Entwicklung von ADHS beim Kind [How does maternal alcohol consumption during pregnancy affect the development of attention deficit/hyperactivity syndrome in the child]. Fortschr Neurol Psychiatr. 2011 Sep; 79(9): 500–6.10.1055/s-0031-127336021739408 Search in Google Scholar

14. Walloch JE, Burger PH, Kornhuber J. Was wird aus Kindern mit fetalem Alkoholsyndrom (FAS)/fetalen Alkoholspektrumstörungen (FASD) im Erwachsenenalter? [What is known about the outcome as adults for children with fetal alcohol syndrome (FAS)/fetal alcohol spectrum disorders (FASD)?]. Fortschr Neurol Psychiatr. 2012 Jun; 80(6): 320–6.10.1055/s-0031-128184622173965 Search in Google Scholar

15. Crocker N, Vaurio L, Riley EP, Mattson SN. Comparison of adaptive behavior in children with heavy prenatal alcohol exposure or attention-deficit/hyperactivity disorder. Alcohol Clin Exp Res. 2009 Nov; 33(11): 2015–23.10.1111/j.1530-0277.2009.01040.x344278219719794 Search in Google Scholar

16. Ware AL, Crocker N, O’Brien JW, Deweese BN, Roesch SC, Coles CD, Kable JA, May PA, Kalberg WO, Sowell ER, Jones KL, Riley EP, Mattson SN; CIFASD. Executive function predicts adaptive behavior in children with histories of heavy prenatal alcohol exposure and attention-deficit/hyperactivity disorder. Alcohol Clin Exp Res. 2012 Aug; 36(8): 1431–41.10.1111/j.1530-0277.2011.01718.x341291022587709 Search in Google Scholar

17. Doyle LR, Coles CD, Kable JA, May PA, Sowell ER, Jones KL, Riley EP, Mattson SN; CIFASD. Relation between adaptive function and IQ among youth with histories of heavy prenatal alcohol exposure. Birth Defects Res. 2019 Jul 15; 111(12): 812–821.10.1002/bdr2.1463665036330719847 Search in Google Scholar

18. Kautz-Turnbull C, Petrenko CLM. A meta-analytic review of adaptive functioning in fetal alcohol spectrum disorders, and the effect of IQ, executive functioning, and age. Alcohol Clin Exp Res. 2021 Dec; 45(12): 2430–2447.10.1111/acer.1472834694016 Search in Google Scholar

19. Khoury JE, Milligan K. Comparing Executive Functioning in Children and Adolescents With Fetal Alcohol Spectrum Disorders and ADHD: A Meta-Analysis. J Atten Disord. 2019 Dec; 23(14): 1801–1815.10.1177/108705471562201626729621 Search in Google Scholar

20. O’Neill J, O’Connor MJ, Yee V, Ly R, Narr K, Alger JR, Levitt JG. Differential neuroimaging indices in prefrontal white matter in prenatal alcohol-associated ADHD versus idiopathic ADHD. Birth Defects Res. 2019 Jul 15; 111(12): 797–811.10.1002/bdr2.1460665030130694611 Search in Google Scholar

21. Astley SJ, Weinberger E, Shaw D, Richards T, Clarren SK (1995). Magnetic resonance imaging and spectroscopy in fetal ethanol exposed Macaca nemestrina. Neurotoxicology and Teratology, 17, 523–530.10.1016/0892-0362(95)00012-G Search in Google Scholar

22. Astley, S. (2010). Profile of the first 1,400 patients receiving diagnostic evaluation for fetal alcohol Spectrum disorders at the Washington state fetal alcohol syndrome diagnostic & prevention network. Canadian Society of Pharmacology and Therapeutics, 17(1), 132–164. Search in Google Scholar

23. Kilpatrick LA, Joshi SH, O’Neill J, Kalender G, Dillon A, Best KM, Narr KL, Alger JR, Levitt JG, O’Connor MJ. Cortical gyrification in children with attention deficit-hyperactivity disorder and prenatal alcohol exposure. Drug Alcohol Depend. 2021 Aug 1;225: 108817.10.1016/j.drugalcdep.2021.108817844506834171826 Search in Google Scholar

24. Alger JR, O’Neill J, O’Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox Res. 2021 Aug;39(4):1054-1075. doi: 10.1007/s12640-021-00342-0. Epub 2021 Mar 22.844273533751467 Open DOISearch in Google Scholar

25. Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, Pan Y, Xu H, Qian Z, Wang M, Shan C, Zhou L, Lei QY, Li Y, Mao H, Lee BH, Sudderth J, DeBerardinis RJ, Zhang G, Owonikoko T, Gaddh M, Arellano ML, Khoury HJ, Khuri FR, Kang S, Doetsch PW, Lonial S, Boggon TJ, Curran WJ, Chen J. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol Cell. 2016 Dec 1; 64(5): 859–874. doi: 10.1016/j.molcel.2016.10.014. Epub 2016 Nov 17. Open DOISearch in Google Scholar

26. Long X, Lebel C. Evaluation of Brain Alterations and Behavior in Children With Low Levels of Prenatal Alcohol Exposure. JAMA Netw Open. 2022 Apr 1; 5(4): e225972.10.1001/jamanetworkopen.2022.5972898478635380644 Search in Google Scholar

27. Roos, A., Wedderburn, C. J., Fouche, J.-P., Subramoney, S., Joshi, S. H., Woods, R. P., Zar, H. J., Narr, K. L., Stein, D. J., & Donald, K. A. (2021). Central white matter integrity alterations in 2-3-year-old children following prenatal alcohol exposure. Drug and Alcohol Dependence, 225, 108826.10.1016/j.drugalcdep.2021.108826829954634182371 Search in Google Scholar

28. Kar, P., Reynolds, J. E., Grohs, M. N., Gibbard, W. B., McMorris, C., Tortorelli, C., & Lebel, C. (2021). White matter alterations in young children with prenatal alcohol exposure. Developmental Neurobiology, 81, 400–410.10.1002/dneu.2282133829663 Search in Google Scholar

29. Bick, J., & Nelson, C. A. (2016). Early adverse experiences and the develop-ing brain.Neuropsychopharmacology,41(1), 177–196.10.1038/npp.2015.252467714026334107 Search in Google Scholar

30. Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review.Frontiers in Human Neuroscience,6(March), 1–24.10.3389/fnhum.2012.00052330704522457645 Search in Google Scholar

31. Astley, S., Aylward, E. H., Carmichael Olson, H., Kerns, K., Brooks, A.,Coggins, T. E.,... Richards, T. (2009). Magnetic resonance imaging out-comes from a comprehensive magnetic resonance study of childrenwith fetal alcohol spectrum disorders.Alcoholism: Clinical and Experi-mental Research, 33(10), 1671–1689.10.1111/j.1530-0277.2009.01004.x417087819572986 Search in Google Scholar

32. Eckstrand, K. L., Ding, Z., Dodge, N. C., Cowan, R. L., Jacobson, J. L.,Jacobson, S. W., & Avison, M. J. (2012). Persistent dose-dependentchanges in brain structure in young adults with low-to-moderate alco-hol exposure in utero.Alcoholism: Clinical and Experimental Research,36(11), 1892–1902.10.1111/j.1530-0277.2012.01819.x342434822594302 Search in Google Scholar

33. Andre QR, McMorris CA, Kar P, Ritter C, Gib-bard WB, Tortorelli C, Lebel C. Different brain profiles in children with prenatal alcohol exposure with or without early adverse exposures. Hum Brain Mapp. 2020 Oct 15; 41(15): 4375–4385.10.1002/hbm.25130750283332659051 Search in Google Scholar

34. Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights. 2022 Jan 5; 16:11779322211062722.10.1177/11779322211062722874392635023907 Search in Google Scholar

35. Kasprian G, Schwartz E, Diogo M, Glatter S, Pfeiler B, Schmidbauer V, Bartha-Doering L, Seidl R, Krampl-Bettelheim E, Prayer D. (2021) MRI Reveals Altered Brain Structure in Fetuses Exposed to Alcohol, Neuroscience, 2021 RSNA Search in Google Scholar

36. Easey KE, Timpson NJ, Munafò MR. Association of Prenatal Alcohol Exposure and Offspring Depression: A Negative Control Analysis of Maternal and Partner Consumption. Alcoholism, Clinical and Experimental Research. 2020 May; 44(5): 1132–1140.10.1111/acer.14324734144532315093 Search in Google Scholar

37. Mohammad S, Page SJ, Wang L, Ishii S, Li P, Sasaki T, Basha A, Salzberg A, Quezado Z, Imamura F, Nishi H, Isaka K, Corbin JG, Liu JS, Kawasawa YI, Torii M, Hashimoto-Torii K. Kcnn2 blockade reverses learning deficits in a mouse model of fetal alcohol spectrum disorders. Nat Neurosci. 2020 Apr;23(4):533-543.10.1038/s41593-020-0592-z713188732203497 Search in Google Scholar

38. Conner KE, Bottom RT, Huffman KJ. The Impact of Paternal Alcohol Consumption on Off-spring Brain and Behavioral Development. Alcohol Clin Exp Res. 2020 Jan;44(1):125-140.10.1111/acer.1424531746471 Search in Google Scholar

39. Irina N. Zakharova, Irina V. Berezhnaya, Alek-sandra I. Sgibneva, Choline deficiency in the body, clinical manifestations and long-term consequences, Pediatrics. Consilium Medicum, 10.26442/26586630.2022.1.201510, 1, (66–71), (2022).10.26442/26586630.2022.1.201510 Search in Google Scholar

40. Bahnfleth, C.L., et al. (2022) Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial. The FASEB Journal. doi.org/10.1096/fj.202101217R.10.1096/fj.202101217R930395134962672 Search in Google Scholar

41. Goodfellow MJ, Shin YJ, Lindquist DH. Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats. Behav Brain Res. 2018 Feb 15; 338: 28–31.10.1016/j.bbr.2017.09.04728987617 Search in Google Scholar

42. Chen, YN., Sha, HH., Wang, YW. et al. Hista-mine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats. J Neuroinflammation 17, 217 (2020). https://doi.org/10.1186/s12974-020-01886-2.10.1186/s12974-020-01886-2737491632698899 Search in Google Scholar

eISSN:
1857-8985
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education