This work is licensed under the Creative Commons Attribution 4.0 International License.
Rudzki K, Dzida M, Pham ND, Pham MT, Nguyen PQ, Xuan PN. Understanding Fuel Saving and Clean Fuel Strategies Towards Green Maritime. Polish Maritime Research, vol. 30, no. 2, 2023, pp. 146-164. https://doi.org/10.2478/pomr-2023-0030.Search in Google Scholar
Al-Enazi A, Okonkwo E C, Bicer Y. A review of cleaner alternative fuels for maritime transportation [J]. Energy Reports, 7, 2021, pp. 1962-1985. https://doi.org/10.1016/j.egyr.2021.03.036.Search in Google Scholar
Zincir B. A short review of ammonia as an alternative marine fuel for decarbonised maritime transportation [J]. Proceedings of the ICEESEN2020, Kayseri, Turkey, 2020, pp. 19-21.Search in Google Scholar
Lu X, Yang K, Yuan D. Ventilation Design of Gas System for LNG Dual Fuel Container Ship [J]. Ship Engineering, 46(S1), 2024, pp. 340-345.Search in Google Scholar
Balcombe P, Staffell I, Kerdan IG, Speirs JF, Brandon NP, Hawkes AD. How can LNG-fueled ships meet decarbonisation targets? An environmental and economic analysis [J]. Energy, 227, 2021, 120462. https://doi.org/10.1016/j.energy.2021.120462.Search in Google Scholar
Ammar NR, Almas M, Nahas Q. Economic Analysis and the EEXI Reduction Potential of Parallel Hybrid Dual-Fuel Engine‒Fuel Cell Propulsion Systems for LNG Carriers. Polish Maritime Research, vol. 30, no. 3, Sciendo, 2023, pp. 59-70.Search in Google Scholar
Ros JA, Skylogianni E, Doedée V, van den Akker JT, Vredeveldt AW, Linders MJ, Goetheer EL, Monteiro JG. Advancements in ship-based carbon capture technology on board LNG-fuelled ships [J]. International Journal of Greenhouse Gas Control, 114, 2022, 103575. https://doi.org/10.1016/j.ijggc.2021.103575.Search in Google Scholar
Mukherjee A, Bruijnincx P, Junginger M. A perspective on biofuels use and CCS for GHG mitigation in the marine sector [J]. Iscience, 23(11), 2020, 101758. https://doi.org/10.1016/j.isci.2020.101758.Search in Google Scholar
Badami M, Bruno JC, Coronas A, Fambri G. Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification. Energy, 159, 2018, pp. 373-384. https://doi.org/10.1016/j.energy.2018.06.100.Search in Google Scholar
Ros JA, Skylogianni E, Doedée V, van den Akker JT, Vredeveldt AW, Linders MJ, Goetheer EL, Monteiro JG. Potential of liquefied natural gas cold energy recovery on board ships [J]. Journal of cleaner production, 271, 2020, 122519. https://doi.org/10.1016/j.jclepro.2020.122519.Search in Google Scholar
He T, Chong ZR, Zheng J, Ju Y, Linga P. LNG cold energy utilisation: Prospects and challenges [J]. Energy, 170, 2019, pp. 557-568. https://doi.org/10.1016/j.energy.2018.12.170.Search in Google Scholar
Li B, Li Y, Lin Y, Cui Y, Yang H. Research on the utilisation of fuel cold energy for LNG powered container ships [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 237(2), 2023, pp. 385-405.Search in Google Scholar
Li Y, Li B, Deng F, Yang Q, Zhang B. Research on the Application of Cold Energy of Largescale LNG-Powered Container Ships to Refrigerated Containers. Polish Maritime Research, vol. 28, no. 4, Sciendo, 2021, pp. 107-121. https://doi.org/10.2478/pomr-2021-0053.Search in Google Scholar
Yao S, Yang Y, Zhang Z, Wei Y, Sun J. Design and optimisation of LNG-powered ship cold energy and waste heat integrated utilisation system based on novel intermediate fluid vaporiser [J]. Case Studies in Thermal Engineering, 40, 2022, 102528. https://doi.org/10.1016/j.csite.2022.102528.Search in Google Scholar
Liu M, Wu D. Evaluation of LNG cryogenic energy utilisation in seawater desalination on LNG-fueled ships. In: RINA, Royal Institution of Naval Architects -International Conference on LNG/LPG and Alternative Fuel Ships 2020. London, United Kingdom; 2020, pp. 43-48.Search in Google Scholar
Shouguang Y, Li C, Wei Y. Design and optimisation of a zero carbon emission system integrated with the utilisation of marine engine waste heat and LNG cold energy for LNG-powered ships. Applied Thermal Engineering, 231, 2023, 120976. https://doi.org/10.1016/j.applthermaleng.2023.120976.Search in Google Scholar
He T, Lv H, Shao Z, Zhang J, Xing X, Ma H. Cascade utilisation of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling [J]. Applied Energy, 277, 2020, 115570. https://doi.org/10.1016/j.apenergy.2020.115570.Search in Google Scholar
Karlsson S. Method and arrangement for waste cold recovery in a gas-fueled sea-going vessel: U.S. Patent 10,168,001[P]. 2019-1-1.Search in Google Scholar
Xiang T, Wang Z, Wang G, Li L. Research on multifunctional integrated system for cold energy cascade utilisation of liquefied natural gas [J]. CIESC Journal, 75(10) 2024, pp. 3401-3413.Search in Google Scholar
Mazzoni S, Rajoo S, Romagnoli A. A boil-off gas utilisation for improved performance of heavy duty gas turbines in combined cycle [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233(1), 2019, pp. 96-110.Search in Google Scholar
Ouyang T, Tan J, Xie S, Wu W, Su Z. A new scheme for large marine vessels LNG cold energy utilisation from thermodynamic and thermoeconomic viewpoints [J]. Energy Conversion and Management, 229, 2021, 113770. https://doi.org/10.1016/j.enconman.2020.113770.Search in Google Scholar
Trædal S, Stang JH, Snustad I, Johansson MV, Berstad D. CO2 Liquefaction Close to the Triple Point Pressure [J]. Energies, 14(24) 2021, 8220.Search in Google Scholar
Lu J, Li Y, Li B, Yang Q, Deng F. Research on re-liquefaction of cargo BOG using liquid ammonia cold energy on CO2 transport ship [J]. International Journal of Greenhouse Gas Control, 129, 2023, 103994. https://doi.org/10.1016/j.ijggc.2023.103994.Search in Google Scholar
Wang K, Yan X, Yuan Y, Jiang X, Lin X, Negenborn RR. Dynamic optimisation of ship energy efficiency considering time-varying environmental factors [J]. Transportation Research Part D: Transport and Environment, 62, 2018, pp. 685-698. https://doi.org/10.1016/j.trd.2018.04.005.Search in Google Scholar
Zamboni G, Scamardella F, Gualeni P, Canepa E. Comparative analysis among different alternative fuels for ship propulsion in a well-to-wake perspective [J]. Heliyon, 10(4), 2024.Search in Google Scholar
Thiaucourt J. Methods and models for the concept design of liquefied natural gas fuel systems on ships [D]. École centrale de Nantes; 2019.Search in Google Scholar