Accesso libero

Glass Microspheres Thermo-Deformation Sintering Processes in the Technologies of Obtaining Materials for Underwater Technical Equipment

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Transporting Oil by Sea. In Planète Energies. January 14, 2015, https://www.planete-energies.com/en/media/article/transporting-oil-sea. Search in Google Scholar

B.Wetzel. Oil in Motion: How Crude Oil Transportation Works. In Breakthrough group. November 1, 2019, https://www.breakthroughfuel.com/blog/oil-in-motion-visibility-into-crude-oil-transportation/. Search in Google Scholar

V. Kobolev. The Black Sea’s oil and gas potential: the reality and prospects of drilling a unique ultra-deep well on Zmiiny Island. In Mining of Mineral Deposits 2017. November 1, 2017. Retrieved from https://oil-gas.com.ua. Search in Google Scholar

O. Lukin, I. Gafych, G. Goncharov, V. Makogon and T. Prygarina. ‘Hydrocarbon potential in entrails of the earth of Ukraine and main trend of its development’, Mineral Resources of Ukraine, vol. 11, no. 4, pp. 28 – 38, 2020, doi. org/10.31996/mru.2020.4.28-38. Search in Google Scholar

Offshore Oil and Gas. In Planete Energies. November 8, 2015, https://www.planete-energies.com/en/media/article/offshore-oil-and-gas-production. Search in Google Scholar

M. Xinhua, X. Jun. ‘The progress and prospects of shale gas exploration and development in southern Sichuan Basin. SW China - Petroleum exploration and development’, Online English edition of the Chinese language journal. vol. 45, no. 1, 2018, doi.org/10.1016/S1876-3804(18)30018-1. Search in Google Scholar

G. Zhang, H. Qu, G. Chen, C. Zhao, F. Zhang, H. Yang, Z. Zhao and M. Ma. ‘Giant discoveries of oil and gas fields in global deep waters in the past 40 years and the prospect of exploration’, Natural Gas Geoscience, vol. 28, no. 4, pp. 1 – 28, 2019, doi: 10.1016/j.jnggs.2019.03.002. Search in Google Scholar

Transportation of oil. In Energy Education. June 2014, https://energyeducation.ca/encyclopedia/Transportation_of_oil. Search in Google Scholar

A. Bahadori. Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries. 1st Edition, School of Environment, Science & Engineering, Southern Cross University, Lismore, NSW, Australia, 2014. doi.org/10.1016/C2013-0-13424-1. Search in Google Scholar

Deep-sea mining for rare metals will destroy ecosystems, say scientists. In The Guardian, March 2023, https://www.theguardian.com/environment/2023/mar/26/deep-sea-mining-for-rare-metals-will-destroy-ecosystems-say-scientists. Search in Google Scholar

С. В. Копійка, І. О. Захарова та О. Г. Єгоров. ‘Обґрунтування раціональної конструкції блоків плавучості підводних апаратів’ (S. Kopiyka, I. Zakharova and A. Egorov. ‘Substantiation of the rational design of buoyancy blocks of under-water vehicles’), Збірник наукових праць Національного університету кораблебудування. vol. 5, no. 2, pp. 28 – 32, 2017, doi. org/10.15589/jnn20170204. Search in Google Scholar

V. Kumar. ‘Buoyancy materials for marine instrumentation”, National Institute of Oceanography, Goa, India, 2015, doi. org/10.13140/RG.2.1.2228.4964. Search in Google Scholar

G. J. Meyer. Low-density polyurethane foam for subsea buoyancy systems. In Sea technology. August 5, 2015, https://sea-technology.com/feature-article-low-density-polyurethane-foam-for-subsea-buoyancy-systems. Search in Google Scholar

D. Choqueuse, P. Davies, D. Perreux, L.Sohier and J-Y Cognard. ‘Mechanical behaviour of syntactic foams for deep sea thermally insulated pipeline’, Applied Mechanics and Materials, vol. 24 - 25, pp. 97 – 102, 2010, doi.org/10.4028/www.scientific.net/AMM.24-25.97. Search in Google Scholar

Н. Соломонюк. Удосконалення констру кції підводного апарату блоками плавучості підвищеної теплостійкості. (N. Solomoniuk. Improvement of the underwater vehicle design by increased heat resistance buoyancy blocks) Ph.D. thesis, Admiral Makarov National University of Shipbuilding, Ukraine, 2012. Search in Google Scholar

L. Smart and E. Moore. Solid state chemistry. In Taylor & Francis Group. 2005, https://www.uobabylon.edu.iq/eprints/publication_10_10256_250.pdf. Search in Google Scholar

J. Dyre. ’Colloquium: The glass transition and elastic models of glass-forming liquids’, American Physical Society, 2006, doi.org/10.1103/RevModPhys.78.953. Search in Google Scholar

Y. Kazymyrenko, ‘Installation for manufacturing of powdered products’. Utility model patent of Ukraine UA01414197, December 30, 2014. Search in Google Scholar

W. Sikorski. Acoustic Emission - Research and Applications. InTech, pp.225, 2013. Search in Google Scholar

Flexible cellular polymeric materials - Polyurethane foam for laminate use — Specification, ISO 6915:2019, 04 - 2020. Available: https://www.iso.org/ru/standard/77358.html. Search in Google Scholar

Rigid cellular plastics. Thermal insulation products for buildings. Specifications. ISO 4898:2018, 03-2018. Search in Google Scholar

W. Wong-Ng. ‘Phase Equilibria and Crystallography of Ceramic Oxides’, Journal of Research of the National Institute of Standards and Technology. 2011, doi. org/10.6028/jres.106.059. Search in Google Scholar

J. Safarian, G. Tranell and M. Tangstad. ‘Thermodynamic and kinetic behaviour of B and Na through the contact of B-doped silicon with Na2O-SiO2 slags’, Metallurgical and Materials Transactions. 2013, doi.org/10.1007/s11663-013-9823-y. Search in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences