Accesso libero

Reverse Engineering-Inspired Parametric 3D Geometry Model of Marine Propeller

INFORMAZIONI SU QUESTO ARTICOLO

Cita

P. Król, “Blade section profile array lifting surface design method for marine screw propeller blade,” Polish Maritime Research, vol. 26, no. 4, 3919, pp.134-141, 2019. doi: /10.2478/pomr-2019-0075. Search in Google Scholar

P. Król, “Analysis of model-scale open-water test uncertainty,” Polish Maritime Research, vol. 29, no. 4, 3922, pp. 4-11, 2022. doi: /10.2478/pomr-2022-0039. Search in Google Scholar

A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without Wed,” Polish Maritime Research, vol. 27, no. 4, 3920, pp. 50-59, 2020. doi: /10.2478/pomr-2020-0065. Search in Google Scholar

D. S. Greeley, “Numerical method for propeller design and analysis in steady flow,” SNAME Transactions, vol. 90, pp. 415-453, 1982. Search in Google Scholar

M. Diez, A. Serani, E. F. Campana, et al., “Design space dimensionality reduction for single-and multi-disciplinary shape optimization,” Proceedings of AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O). AVIATION 2016, Washington DC, USA. 13-17 June, 2016. doi: 10.2514/6.2016-4295. Search in Google Scholar

I. Marinić-Kragić, D. Vučina, and M. Ćurković, “Efficient shape parameterization method for multidisciplinary global optimization and application to integrated ship hull shape optimization workflow,” Computer-Aided Design, vol. 80, 2016, ISSN 0010-4485. doi: 10.1016/j.cad.2016.08.001. Search in Google Scholar

A. Miao, M. Zhao, and D. Wan, “CFD-based multi-objective optimisation of S60 Catamaran considering demihull shape and separation,” Applied Ocean Research, vol. 97, 2020. doi:10.1016/j.apor.2020.102071. Search in Google Scholar

A. Serani, F. Stern, E. F. Campana, et al., “Hull-form stochastic optimization via computational-cost reduction methods,” Engineering with Computers, vol. 38 (Suppl. 3), pp. 2245-2269, 2022. doi:10.1007/s00366-021-01375-x. Search in Google Scholar

S. Gaggero, “Numerical design of a RIM-driven thruster using a RANS-based optimization approach,” Applied Ocean Research, vol. 94, 101941, 2020. doi:10.1016/j. apor.2019.101941. Search in Google Scholar

S. Gaggero, J. Gonzalez-Adalid, and M. P. Sobrino, “Design and analysis of a new generation of CLT propellers,” Applied Ocean Research, vol. 59, pp. 424-450, 2016. doi:10.1016/j. apor.2016.06.014. Search in Google Scholar

S. Gaggero, G. Tani, D. Villa, M. Viviani, P. Ausonio, P. Travi, G. Bizzarri, and F. Serra, “Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft,” Applied Ocean Research, vol. 64, pp. 31-57, 2017. doi:10.1016/j.apor.2017.01.018. Search in Google Scholar

S. Gaggero, G. Vernengo, and D. Villa, “A marine propeller design method based on two-fidelity data levels,” Applied Ocean Research, vol. 123, 103156, 2022. doi:10.1016/j. apor.2022.103156. Search in Google Scholar

D. Bertetta, S. Brizzolara, S. Gaggero, M. Viviani, and L. Savio, “CPP propeller cavitation and noise optimization at different pitches with panel code and validation by cavitation tunnel measurements,” Ocean Engineering, vol. 53, pp. 177-195, 2012. doi:10.1016/j.oceaneng.2012.06.026. Search in Google Scholar

X. Ye, T. R. Jackson, and N. M. Patrikalakis, “Geometric design of functional surfaces,” Computer-Aided Design, vol. 28, no. 9, pp. 741-52, 1996. doi:10.1016/0010-4485(95)00080-1. Search in Google Scholar

G. W. Vickers, “Computer-aided manufacture of marine propellers,” Computer-Aided Design, vol. 9, no. 4, pp. 267-74, 1977. doi:10.1016/0010-4485(77)90008-2. Search in Google Scholar

Y. C. Kim, Y. M. Lee, M. J. Son, T. W. Kim, and J. C. Suh, “Generating cutter paths for marine propellers without interference and gouging,” Journal of Marine Science and Technology, vol. 14, no. 3, pp. 275-84, 2009. doi:10.1007/s00773-008-0033-2. Search in Google Scholar

C. S. Lee and J. H. Lee, “Geometric modeling and tool path generation of model propellers with a single setup change,” The International Journal of Advanced Manufacturing Technology, vol. 50, no. 1, pp. 253-63, 2010. doi:10.1007/s00170-009-2495-8. Search in Google Scholar

F. Pérez-Arribas and R. Pérez-Fernández, “B-spline design model for propeller blades,” Advances in Engineering Software, vol. 118, pp. 35-44, 2018. doi:10.1016/j. advengsoft.2018.01.005. Search in Google Scholar

A. Arapakopoulos, R. Polichshuk, Z. Segizbayev, S. Ospanov, A. I. Ginnis, and K. V.Kostas, “Parametric models for marine propellers,” Ocean Engineering, vol. 192, 106595, 2019. doi:10.1016/j.oceaneng.2019.106595. Search in Google Scholar

T. Várady, R. R. Martin, and J. Cox, “Reverse engineering of geometric models—an introduction,” Computer-Aided Design, vol. 29, no. 4, pp. 255–268, 1997. doi:10.1016/s0010-4485(96)00054-1. Search in Google Scholar

M. G. Cox, The numerical evaluation of B-splines. Technical report, National Physics Laboratory DNAC 4, 1971. doi:10.1093/imamat/10.2.134. Search in Google Scholar

C. De Boor, “On calculation with B-splines,” Journal of Approximation Theory, vol. 6, pp. 50–62, 1972. doi:https://doi.org/10.1016/0021-9045(72)90080-9. Search in Google Scholar

P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares methods,” Mathematics of Computation, vol. 37, no. 155, pp. 141-158, 1981. doi:10.2307/2007507. Search in Google Scholar

Q. H. Zeng and D. T. Lu, “Curve and surface fitting based on moving least-squares methods,” Journal of Engineering Graphics, vol. 25, no. 1, pp. 84-89, 2004. doi:1003-0158(2004)01-0084-06. Search in Google Scholar

A. Yazaki, E. Kuramochi, and T. Kumasaki, “Open water test series with modified AU-type four-bladed propeller models,” Journal of Zosen Kiokai, vol. 108, pp. 99-104, 1960. Search in Google Scholar

S. Leone, C. Testa, L. Greco, and F. Salvatore, “Computational analysis of self-pitching propellers performance in open water,” Ocean Engineering, vol. 64, pp. 122-134, 2013. doi: https://doi.org/10.1016/j.oceaneng.2013.02.012. Search in Google Scholar

W. Zhu and H. Gao, “Hydrodynamic characteristics of bioinspired marine propeller with various blade sections,” Ships and Offshore Structures, 2020. doi:10.1080/17445302.2020.1713039. Search in Google Scholar

S. Joe and F. Y. Kuo, “Remark on Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator,” ACM Transactions on Mathematical Software, vol. 29, no. 1, pp. 49–57, 2003. doi:10.1145/42288.214372. Search in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences