INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. L. Zhen, Y. W. Wu, S. A. Wang, et al. ‘Green technology adoption for fleet deployment in a shipping network’. Transportation Research Part B: Methodological, 139 (2020), 388-410. Search in Google Scholar

2. A. Halff, L. Younes, T. Boersma. ‘The likely implications of the new IMO standards on the shipping industry’. Energy Policy, 126 (2019), 277–286. Search in Google Scholar

3. Y. P. Yuan, J. X. Wang, X. P. Yan, et al. ‘A review of multi-energy hybrid power system for ships’. Renewable and Sustainable Energy Reviews, 132 (2020), 110081.10.1016/j.rser.2020.110081 Search in Google Scholar

4. P. Cheng, N. Liang, R. Y. Li, et al. ‘Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy’. Energies 2020, 13, 1, doi:10.3390/en13010001.10.3390/en13010001 Search in Google Scholar

5. Y. Y. Xie, W. Q. Guo, Q. W. Wu, et al. ‘Robust MPC-based bidding strategy for wind storage systems in real-time energy and regulation markets’. Electrical Power and Energy Systems, 124 (2021), 106361.10.1016/j.ijepes.2020.106361 Search in Google Scholar

6. Y. Wang. ‘The working principle and practical application of rotor sail’. Shanghai Energy Conservation, 2018 (11), doi:10.13770/j.cnki.issn2095-705x.2018.11.010. Search in Google Scholar

7. L. Talluri, D.K. Nalianda, E. Giuliani. ‘Techno economic and environmental assessment of Flettner rotors for marine propulsion’. Ocean Engineering, 154 (2018), 1-15. Search in Google Scholar

8. K. Roncin, M. Behrel, P. Iachkine, et al. ‘Benchmark Sea Trials on a 6-Meter Boat Powered by Kite’. Applied Science, 2020, 10, 6148; doi:10.3390/app10186148.10.3390/app10186148 Search in Google Scholar

9. R. H. Lu and J. W. Ringsberg. ‘Ship energy performance study of three windassisted ship propulsion technologies including a parametric study of the Flettner rotor technology’. Ships and Offshore Structures, doi: 10.1080/17445302.2019.1612544.10.1080/17445302.2019.1612544 Search in Google Scholar

10. G. Bordogna, S. Muggiasca, S. Giappino, et al. ‘Experiments on a Flettner rotor at critical and supercritical Reynolds numbers’. Journal of Wind Engineering & Industrial Aerodynamics, 188 (2019), 19-29. Search in Google Scholar

11. A. De Marco, S. Mancini, C. Pensa, et al. ‘Flettner Rotor Concept for Marine Applications: A Systematic Study’. International Journal of Rotating Machinery, doi:10.1155/2016/3458750.10.1155/2016/3458750 Search in Google Scholar

12. A. De Marco, S. Mancini, C. Pensa, et al. ‘Marine application of Flettner rotors: numerical study on a systematic variation of geometric factor by DOE approach,’ in Proceedings of the 6th International Conference on Computational Methods in Marine Engineering (MARINE’15), Rome, Italy, June 2015. Search in Google Scholar

13. A. Thom. ‘Effects of discs on the air forces on a rotating cylinder,’ Reports & Memoranda 1623, Aerospace Research Council, 1934. Search in Google Scholar

14. G. Bordogna, S. Muggiasca, S. Giappino, et al. ‘The effects of the aerodynamic interaction on the performance of two Flettner rotors’. Journal of Wind Engineering & Industrial Aerodynamics, https://doi.org/10.1016/j.jweia.2019.104024.10.1016/j.jweia.2019.104024 Search in Google Scholar

15. S.J. Karabelas, B.C. Koumroglou, C.D. Argyropoulos, et al. ‘High Reynolds number turbulent flow past a rotating cylinder’. Applied Mathematical Modelling, 36 (2012), 379-398. Search in Google Scholar

16. T. Craft, N. Johnson, B. Launder. ‘Back to the Future? A Re-examination of the Aerodynamics of Flettner-Thom Rotors for Maritime Propulsion’. Flow Turbulence Combust, doi: 10.1007/s10494-013-9486-4.10.1007/s10494-013-9486-4 Search in Google Scholar

17. M. Traut, P. Gilbert, C. Walsh, et al. ‘Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes’. Applied Energy, 113 (2014), 362-372. Search in Google Scholar

18. S. Salter, G. Sortino, J. Latham. ‘Sea-going hardware for the cloud albedo method of reversing global warming’. Phil. Trans. R. Soc. A, (2008), 366, 3989-4006, doi:10.1098/rsta.2008.0136.10.1098/rsta.2008.013618757273 Search in Google Scholar

19. C. Badalamenti, S. A. Prince. ‘Effects of endplates on a rotating cylinder in crossflow,’ in Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 2008.10.2514/6.2008-7063 Search in Google Scholar

20. F. Tillig, J. W. Ringsberg, et al. ‘Design, operation and analysis of wind-assisted cargo ships’. Ocean Engineering, 211 (2020), 107603.10.1016/j.oceaneng.2020.107603 Search in Google Scholar

21. X. Y. Lu. ‘Study on aerodynamic Performance of Vertical Magnus Wind Turbine’. University of Xiang Tan, May 2019. Search in Google Scholar

22. A. Sedaghat, I. Samani, M. Ahmadi-Baloutaki, et al. ‘Computational study on novel circulating aerofoils for use in Magnus wind turbine blades’. Energy, 91 (2015), 393-403. Search in Google Scholar

23. A. Sedaghat. ‘Magnus type wind turbines: Prospectus and challenges in design and modelling’. Renewable Energy, 62 (2014), 619-628.10.1016/j.renene.2013.08.029 Search in Google Scholar

24. J. Seifert. ‘A review of the Magnus effect in aeronautics’. Progress in Aerospace Sciences, 55 (2012), 17-45.10.1016/j.paerosci.2012.07.001 Search in Google Scholar

25. X. Y. Liu, Y. X. Wang, J. J. Liang et al. ‘CFD Analysis of Aerodynamic Characteristics of Ship’s Wind-Assisted Rotor Sail. Navigation of China’, doi: 1000-4653 (2019) 04-0046-05. Search in Google Scholar

26. G. Dong, P. T. Lee. ‘Environmental effects of emission control areas and reduced speed zones on container ship operation’. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.122582.10.1016/j.jclepro.2020.122582 Search in Google Scholar

27. N. R. Ammar, I. S. Seddiek. ‘Enhancing energy efficiency for new generations of containerized shipping’. Ocean Engineering, 215 (2020), 107887.10.1016/j.oceaneng.2020.107887 Search in Google Scholar

28. D. Wang, P. L.-F. Liu. ‘An ISPH with k–ε closure for simulating turbulence under solitary waves’. Coastal Engineering, 157 (2020), 103657.10.1016/j.coastaleng.2020.103657 Search in Google Scholar

29. B. J. Guo, S. Steen. ‘Comparison of numerical methods for wave generation by VOF-based numerical wave tank’. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. OMAE 2011-49777. Search in Google Scholar

30. D. Moreira, N. Mathias, T. Morais. ‘Dual flapping foil system for propulsion and harnessing wave energy: A 2D parametric study for unaligned foil configurations’. Ocean Engineering, 215 (2020), 107875.10.1016/j.oceaneng.2020.107875 Search in Google Scholar

31. M. Terziev, T. Tezdogan, A. Incecik. ‘Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD’. Ships and Offshore Structures, doi: 10.1080/17445302.2020.1816731.10.1080/17445302.2020.1816731 Search in Google Scholar

32. I. Razgallah, S. Kaidi, H. Smaoui, et al. ‘The impact of free surface modelling on hydrodynamic forces for ship navigating in inland waterways: water depth, drift angle, and ship speed effect’. Journal of Marine Science and Technology, https://doi.org/10.1007/s00773-018-0566-y.10.1007/s00773-018-0566-y Search in Google Scholar

33. D. J. Wang, K. Liu, P. Huo, et al. ‘Motions of an unmanned catamaran ship with fixed tandem hydrofoils in regular head waves’. Journal of Marine Science and Technology, https://doi.org/10.1007/s00773-018-0583-x.10.1007/s00773-018-0583-x Search in Google Scholar

34. B. S. Zhang, B. W. Song, Z. Y. Mao, et al. ‘Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle’. Energy, 189 (2019), 116249.10.1016/j.energy.2019.116249 Search in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences