Accesso libero

Design of Jack-Up Platform for 6 MW Wind Turbine: Parametric Analysis Based Dimensioning of Platform Legs

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. GWEC. (2018). Global Wind Statistics 2017. Global Wind Energy Council, 14 February 2018.Search in Google Scholar

2. http://www.polenergia.pl/pol/pl/strona/farmy-morskie (12/12/2018)Search in Google Scholar

3. https://www.equinor.com/en/what-we-do/hywind-where-the-wind-takes-us.html (12/12/2018)Search in Google Scholar

4. Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD). Source: http://www.fukushima-forward.jp/pdf/pamphlet3.pdf (13/12/2018)Search in Google Scholar

5. Fulton G.R., Malcolm D.J., Elwany H., Stewart W., Moroz E., Dempster H.: Semi-Submersible Platform and Anchor Foundation Systems for Wind Turbine Support. National Renewable Energy Laboratory (U.S.), Subcontract Report NREL/SR-500-40282, December 2007Search in Google Scholar

6. Bachynski E.E., Moan T. (2012). Design considerations for tension leg platform wind turbines. Marine Structures 29 (2012) 89–114.10.1016/j.marstruc.2012.09.001Search in Google Scholar

7. Żywicki J., Dymarski P., Ciba E., Dymarski C. (2017). Design of Structure of Tension Leg Platform for 6 MW Offshore Wind Turbine Based on Fem Analysis. Polish Maritime Research 24(s1), 230-241. https://doi.org/10.1515/pomr-2017-004310.1515/pomr-2017-0043Open DOISearch in Google Scholar

8. Dymarski C., Dymarski P., Żywicki J. (2017). Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m. Polish Maritime Research 24(s1), 59-66. https://doi.org/10.1515/pomr-2017-002210.1515/pomr-2017-0022Search in Google Scholar

9. Karimirad M., Moan T. (2012). Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth. DeepWind, 19-20 January 2012, Trondheim, Norway. Energy Procedia 24(2012) 340-35010.1016/j.egypro.2012.06.117Search in Google Scholar

10. Duan F., Hu Z., Niedzwecki J.M. (2016). Model test investigation of a spar floating wind turbine. Marine Structures 49 (2016) 76-9610.1016/j.marstruc.2016.05.011Search in Google Scholar

11. Dymarski P. Ciba E. (2017). Design of a cell-spar platform for a 6 MW wind turbine. Parametric analysis of the mooring system. Twenty First International Conference on Hydrodynamics in Ship Design and Operation -HYDRONAV, Gdańsk, 28-29 June 2017Search in Google Scholar

12. Yeter B., Garbatov Y., Soares C.G. (2014). Fatigue damage analysis of a fixed offshore wind turbine supporting structure. Developments in Maritime Transportation and Exploitation of Sea Resources, Taylor & Francis Group, London10.1201/b15813-51Search in Google Scholar

13. Velarde J., Bachynski E.E. (2017). Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017, 18-20 January 2017, Trondheim, Norway. Energy Procedia 137 (2017) 3–1310.1016/j.egypro.2017.10.330Search in Google Scholar

14. Bogdaniuk M. (2017). Estimation of the fatigue life of the hull of TLP [in Polish]. Technical Report. Polish Register of Shipping, Gdańsk 2017Search in Google Scholar

15. Rozmarynowski B., Mikulski T. (2018). Selected problems of sensitivity and reliability of a jack-up platform. Polish Maritime Research 25(1(97)), 77-84. https://doi.org/10.2478/pomr-2018-000910.2478/pomr-2018-0009Open DOISearch in Google Scholar

16. Dymarski C., Dymarski P., Żywicki J. (2015). DESIGN AND STRENGTH CALCULATIONS OF THE TRIPOD SUPPORT STRUCTURE FOR OFFSHORE POWER PLANT. Polish Maritime Research 22(1(85)), 36-46. https://doi.org/10.1515/pomr-2015-000610.1515/pomr-2015-0006Open DOISearch in Google Scholar

17. Kahsin M., Łuczak M. (2015). Numerical Model Quality Assessment of Offshore Wind Turbine Supporting Structure Based on Experimental Data. Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring. Vol. 1/ed. Fu-Kuo Chang, Fotis Kopsaftopoulos 439 North Duke Street · Lancaster, PA 17602-4967, U.S.A. : DEStech Publications, Inc., 2015, 2817-282410.12783/SHM2015/349Search in Google Scholar

18. Wilson J.F.: Dynamics of Offshore Structures (2nd Edition). John Wiley & Sons, Inc., Hoboken, New Jersey, 2003Search in Google Scholar

19. Chandrasekaran S.: Dynamic Analysis and Design of Offshore Structures (Ocean Engineering & Oceanography). Springer, New Delhi, 201510.1007/978-81-322-2277-4Search in Google Scholar

20. Sarpkaya T. Wave Forces on Offshore Structures. Cambridge University Press, New York, 201010.1017/CBO9781139195898Search in Google Scholar

21. Offshore Standards DNV-OS-J103 (2013). Design of Floating Wind Turbine Structures. Det Norske Veritas, June 2013Search in Google Scholar

22. Niezgodziński M.E., Niezgodziński T.: Strength formulas, diagrams, and tables [in Polish]. WNT, Warszawa 2013.Search in Google Scholar

23. Dymarski P., Ciba E., Marcinkowski T. (2016). Effective method for determining environmental loads on supporting structures for offshore wind turbines. Polish Maritime Research 23(1(89)), 52-60. https://doi.org/10.1515/pomr-2016-000810.1515/pomr-2016-0008Open DOISearch in Google Scholar

24. Recommended Practice DNV-RP-C205 (2010). Environmental Conditions and Environmental Loads. Det Norske Veritas, October 2010Search in Google Scholar

25. Sarpkaya T. (1986). In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers, Monterey, California. Naval Postgraduate SchoolSearch in Google Scholar

26. Product Portfolio Overview. The Senvion 6.XM series.Search in Google Scholar

27. Jonkman J., Butterfield S., Musial W., Scott G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060 February 200910.2172/947422Search in Google Scholar

28. Kooijman H.J.T., Lindenburg C., Winkelaar D., van der Hooft E.L. (2003). DOWEC 6 MW PRE-DESIGN. Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS. Report DOWEC-F1W2-HJK-01-046/9 (public version). September 2003Search in Google Scholar

29. Recommended Practice DNVGL-RP-C203 (2016). Fatigue design of offshore steel structures. DNV GL, April 2016Search in Google Scholar

30. Offshore Standards DNVGL-OS-C101 (2016). Design of offshore steel structures, general - LRFD method. April 2016Search in Google Scholar

31. EUROPEAN STANDARD IEC 61400-3 (2009). Wind turbines - Part 3: Design requirements for offshore wind turbines (IEC 61400-3:2009)Search in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences