Accesso libero

Evaluation of pea (Pisum sativum L.) varieties for suitability in protein isolate production

 e   
01 set 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Arslan, M. (2017). Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Research, 40(5), 803–810. https://doi.org/0.18805/LR-369. Search in Google Scholar

Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., Régnier, J. M. (1998). Feeding value of pea (Pisum sativum, L.) Chemical composition of different categories of pea. Animal Science, 67(3), 609–619. https://doi.org/10.1017/S1357729800033051. Search in Google Scholar

Baxter, I. R., Ziegler, G., Lahner, B., Mickelbart, M. V., Foley, R., Danku, J., & Salt, D. E. (2014). Single-kernel ionomic profiles are highly heritable in maize. PLoS ONE, 9(1), e87628. https://doi.org/10.1371/journal.pone.0087628. Search in Google Scholar

Bestwick, M., Miller, P., Jones, C., & Olson-Rutz, K. (2018). Pea protein formation and management options [Technical report]. Montana State University. http://landresources.montana.edu/soilfertility/documents/PDF/reports/Bestwick2018PeaProtFormation.pdf Search in Google Scholar

Burstin, J., Salloignon, P., Chabert-Martinello, M., Magnin-Robert, J. B., Siol, M., Jacquin, F., Chauveau, A., Pont, C., Aubert, G., Delaitre, C., Truntzer, C., & Duc, G. (2015). Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics, 16, 105. https://doi.org/10.1186/s12864-015-1266-1. Search in Google Scholar

Chudasama, M., & Goyray, J. (2023). Chemical and techno-functional characterization of pea protein: A review. Technische Sicherheit, 23(11), 153-182. Search in Google Scholar

Ciurescu, G., Toncea, I., Ropotă, M., & Hăbeanu, M. (2018). Seeds composition and their nutrients quality of some pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars. Romanian Agricultural Research, (35), 101–108. https://doi.org/0.59665/rar3514. Search in Google Scholar

Emkani, M., Moundanga, S., Oliete, B., & Saurel, R. (2023). Protein composition and nutritional aspects of pea protein fractions obtained by a modified isoelectric precipitation method using fermentation. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1284413. Search in Google Scholar

Gorissen, S. H. M., Crombag, J. J. R., Senden, J. M. G., Waterval, W. A. H., Bierau, J., Verdijk, L. B., & van Loon, L. J. C. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–1695. https://doi.org/10.1007/s00726-018-2640-5. Search in Google Scholar

Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006. Search in Google Scholar

Gu, Z. (2014). Recovery of Recombinant Proteins from Plants Using Aqueous Two-Phase Partitioning Systems: An Outline. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_8 Search in Google Scholar

Hansen, L., Bu, F., & Ismail, B. (2022). Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods, 11(23), 3773. https://doi.org/10.3390/foods11233773. Search in Google Scholar

Henriet, C., Aimé, D., Térézol, M., Kilandamoko, A., Rossin, N., Combes-Soia, L. & Gallardo, K. (2019). Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. Journal of Experimental Botany, 70(16), 4287-4304. https://doi.org/10.1093/jxb/erz114. Search in Google Scholar

Jha, A. B., Warkentin, T. D. (2020). Biofortification of pulse crops: Status and future perspectives. Plants, 9(1), 73. https://doi.org/10.3390/plants9010073. Search in Google Scholar

Karkanis, A., Ntatsi, G., Kontopoulou, C.-K., Pristeri, A., Bilalis, D., & Savvas, D. (2016). Field pea in european cropping systems: Adaptability, biological nitrogen fixation and cultivation practices. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 325–336. https://doi.org/10.15835/NBHA44210618. Search in Google Scholar

Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135. Search in Google Scholar

Lam, A. C. Y., Warkentin, T. D., Tyler, R. T., & Nickerson, M. T. (2017). Physicochemical and functional properties of protein isolates obtained from several pea cultivars. Cereal Chemistry, 94(1), 89–97. https://doi.org/10.1094/CCHEM-04-16-0097-FI. Search in Google Scholar

Metsalu, T. & Vilo, J. (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(1), 566–570. https://doi.org/10.1093/nar/gkv468. Search in Google Scholar

Mohammed, Y.A., Chen, C., Walia, M.K., Torrion, J.A., McVay, K., Lamb, P. & Khan, Q. (2018). Dry pea (Pisum sativum L.) protein, starch, and ash concentrations as affected by cultivar and environment. Canadian Journal of Plant Science, 98(5), 1188–1198. https://doi.org/10.1139/cjps-2017-0338. Search in Google Scholar

Prudent, M., Vernoud, V., Girodet, S., & Salon, C. (2016). How nitrogen fixation is modulated in response to different water availability levels and during recovery: A structural and functional study at the whole plant level. Plant and Soil, 399, 1–12. https://doi.org/10.1007/s11104-015-2674-3. Search in Google Scholar

Shen, Y., Hong, S., & Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101, 71–127. https://doi.org/10.1016/bs.afnr.2022.02.002. Search in Google Scholar

Taghvaei, M., Sadeghi, R., & Smith, B. (2022). Seed to seed variation of proteins of the yellow pea (Pisum sativum L.). PLOS ONE, 17(8), e0271887. https://doi.org/10.1371/journal.pone.0271887. Search in Google Scholar

Thavarajah, D., Lawrence, T., Boatwright, L., Johnson, N., Kay, J., Shipe, E. R., Kumar, S., & Thavarajah, P. (2023). Organic dry pea (Pisum sativum L.): A sustainable alternative pulse-based protein for human health. PLOS ONE, 18(4), e0284380. https://doi.org/10.1371/journal.pone.0284380. Search in Google Scholar

Tulbek, M., Wang, Y., & Hounjet, M. (2024). Pea—a sustainable vegetable protein crop. In Advances for a Healthier Tomorrow (pp. 143–162). Elsevier BV. https://doi.org/10.1016/b978-0-323-91652-3.00027-7. Search in Google Scholar

Tzitzikas, E. N., Vincken, J. P., de Groot, J., Gruppen, H., & Visser, R. G. (2006). Genetic variation in pea seed globulin composition. J Agric Food Chem, 54(2), 425-33. https://doi.org/10.1021/jf0519008. Search in Google Scholar

Walter, S., Zehring, J., Mink, K., Quendt, U., Zocher, K. & Rohn, S. (2022). Protein content of peas (Pisum sativum) and beans (Vicia faba)— Influence of cultivation conditions. Journal of Food Composition and Analysis, 105, 104257. https://doi.org/10.1016/j.jfca.2021.104257. Search in Google Scholar

World Health Organization, Food and Agriculture Organization of the United Nations, & United Nations University. (2007). Protein and amino acid requirements in human nutrition (WHO Technical Report Series, No. 935). World Health Organization. Search in Google Scholar

Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.- Y., & Zou, L. (2023). A comprehensive review of pea (Pisum sativum L.): Chemical composition, processing, health benefits, and food applications. Foods, 12(13), 2527. https://doi.org/10.3390/foods12132527. Search in Google Scholar

Yanni, A. E., Iakovidi, S. I., Vasilikopoulou, E., & Karathanos, V. T. (2023). Legumes: A vehicle for transition to sustainability. Nutrients, 16(1). 98. https://doi.org/10.3390/nu16010098. Search in Google Scholar

Yuvaraj, M., Pandiyan, M., & Gayathri, P. (2020). Role of legumes in improving soil fertility status. Legume Crops - Prospects, Production and Uses. https://doi.org/10.5772/INTECHOPEN.93247. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Botanica, Ecologia