Accesso libero

Analysis of Fatty Acids and Antibacterial Whey Proteins in Organic and Conventional Milk: Potential Influence on Lactic Acid Bacteria Growth

, ,  e   
31 dic 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Ayivi, R. D., Ibrahim, S. A., Krastanov, A., Somani, A., & Siddiqui, S. A. (2022). The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Dairy Science, 105(10), 7986–7997. DOI: 10.3168/jds.2022-21971 Search in Google Scholar

Azzolini, M., Tosi, E., Veneri, G., & Zapparoli, G. (2010). Evaluating the efficacy of lysozyme against lactic acid bacteria under different winemaking scenarios. South African Journal of Enology and Viticulture, 31(2), 99–105. DOI: 10.21548/31-2-1406 Search in Google Scholar

Bartkiene, E., Lele, V., Sakiene, V., Zavistanaviciute, P., Ruzauskas, M., Stankevicius, A., … Juodeikiene, G. (2020). Fermented, ultrasonicated, and dehydrated bovine colostrum: Changes in antimicrobial properties and immunoglobulin content. Journal of Dairy Science, 103(2), 1315–1323. DOI: 10.3168/jds.2019-16357 Search in Google Scholar

Beal, C., Fonseca, F., & Corrieu, G. (2001). Resistance to freezing and frozen storage of streptococcus thermophilus is related to membrane fatty acid composition. Journal of Dairy Science, 84(11), 2347–2356. DOI: 10.3168/jds.S0022-0302(01)74683-8 Search in Google Scholar

Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular, 1121(1–2), 130–136. DOI: 10.1016/0167-4838(92)90346-F Search in Google Scholar

Benkerroum, N. (2008). Antimicrobial activity of lysozyme with special relevance to milk. African Journal of Biotechnology, 7(25), 4856–4867. Search in Google Scholar

Borgonovi, T. F., Virgolin, L. B., Janzantti, N. S., Casarotti, S. N., & Penna, A. L. B. (2022). Fruit bioactive compounds: Effect on lactic acid bacteria and on intestinal microbiota. Food Research International, 161(February). DOI: 10.1016/j.foodres.2022.111809 Search in Google Scholar

Breza-Boruta, B., Ligocka, A., & Bauza-kaszewska, J. (2022). Natural Bioactive Compounds in Organic and Conventional Fermented Foods. Molecules. Search in Google Scholar

Brodziak, A., Król, J., Litwińczuk, Z., & Barłowska, J. (2018). Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. International Journal of Dairy Technology, 71(2), 321–332. DOI: 10.1111/1471-0307.12462 Search in Google Scholar

Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., Sanderson, R., & Leifert, C. (2008). Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. Journal of the Science of Food and Agriculture, 88(8), 1431–1441. DOI: 10.1002/jsfa.3235 Search in Google Scholar

Carlsson, Å., Björck, L., & Persson, K. (1989). Lactoferrin and Lysozyme in Milk During Acute Mastitis and Their Inhibitory Effect in Delvotest P. Journal of Dairy Science, 72(12), 3166–3175. DOI: 10.3168/jds.S0022-0302(89)79475-3 Search in Google Scholar

Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progress in Lipid Research, 82, 1–28. DOI: 10.1016/j.plipres.2021.101093 Search in Google Scholar

Cheng, J. B., Wang, J. Q., Bu, D. P., Liu, G. L., Zhang, C. G., Wei, H. Y., … Wang, J. Z. (2008). Factors affecting the lactoferrin concentration in bovine milk. Journal of Dairy Science, 91(3), 970–976. DOI: 10.3168/jds.2007-0689 Search in Google Scholar

Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M., & Etter, L. (2008). Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. International Dairy Journal, 18(10–11), 976–982. DOI: 10.1016/j.idairyj.2008.05.010 Search in Google Scholar

Costa, A., Goi, A., Penasa, M., Nardino, G., Posenato, L., & De Marchi, M. (2021). Variation of immunoglobulins G, A, and M and bovine serum albumin concentration in Holstein cow colostrum. Animal, 15(7), 100299. DOI: 10.1016/j.animal.2021.100299 Search in Google Scholar

Costa, M. P. D., Frasao, S., B., Lima, B. R. C., Rodrigues, B. L., & Junior, C. A. C. (2016). Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat’s milk yogurts fermentation. Talanta, 152, 162–170. DOI: 10.1016/j.talanta.2016.01.061 Search in Google Scholar

D’Incecco, P., Gatti, M., Hogenboom, J. A., Bottari, B., Rosi, V., Neviani, E., & Pellegrino, L. (2016). Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiology, 57, 16–22. DOI: 10.1016/j. fm.2015.11.020 Search in Google Scholar

Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., & Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 89, 77–85. DOI: 10.1016/j.idairyj.2018.09.003 Search in Google Scholar

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. DOI: 10.1007/s00253-009-2355-3 Search in Google Scholar

Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum, Technologia Alimentaria, 13(1), 5–25. DOI: 10.17306/j.afs.2014.1.1 Search in Google Scholar

Ellis, K. A., Innocent, G., Grove-White, D., Cripps, P., McLean, W. G., Howard, C. V., & Mihm, M. (2006). Comparing the fatty acid composition of organic and conventional milk. Journal of Dairy Science, 89(6), 1938–1950. DOI: 10.3168/jds. S0022-0302(06)72261-5 Search in Google Scholar

Florence, A. Béal, C., da Silva, R. C., & Oliveira, M. N. (2014). Survival of three Bifidobacterium animalis subsp. lactis strains is related to transvaccenic and α-linolenic acids contents in organic fermented milks. Lwt, 56(2), 290–295. DOI: 10.1016/j.lwt.2013.11.036 Search in Google Scholar

Florence, A. C. R., Béal, C., Silva, R. C., Bogsan, C. S. B., Pilleggi, A. L. O. S., Gioielli, L. A., & Oliveira, M. N. (2012). Fatty acid profile, transoctadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chemistry, 135(4), 2207–2214. DOI: 10.1016/j.foodchem.2012.07.026 Search in Google Scholar

Franco, I., Castillo, E., Pérez, M. D., Calvo, M., & Sánchez, L. (2010). Effect of bovine lactoferrin addition to milk in yogurt manufacturing. Journal of Dairy Science, 93(10), 4480–4489. DOI: 10.3168/jds.2009-3006 Search in Google Scholar

Givens, D. I., & Lovegrove, J. A. (2016). Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta- and redundancy analyses. British Journal of Nutrition, 116(1), 1–2. DOI: 10.1017/S0007114516001604 Search in Google Scholar

Gomes, S. I. F., van Bodegom, P. M., van Agtmaal, M., Soudzilovskaia, N. A., Bestman, M., Duijm, E., … van Eekeren, N. (2020). Microbiota in Dung and Milk Differ Between Organic and Conventional Dairy Farms. Frontiers in Microbiology, 11(July), 1–12. DOI: 10.3389/fmicb.2020.01746 Search in Google Scholar

Gomes, V., Madureira, K. M., Soriano, S., Libera, A. M. M. P. Della, Blagitz, M. G., & Benesi, F. J. (2011). Factors affecting immunoglobulin concentration in colostrum of healthy holstein cows immediately after delivery. Pesquisa Veterinaria Brasileira, 31(SUPPL. 1), 53–56. DOI: 10.1590/S0100-736X2011001300009 Search in Google Scholar

Goulding, D. A., O’Regan, J., Bovetto, L., O’Brien, N. M., & O’Mahony, J. A. (2021). Influence of thermal processing on the physicochemical properties of bovine lactoferrin. International Dairy Journal, 119, 105001. DOI: 10.1016/j.idairyj.2021.105001 Search in Google Scholar

Grodkowski, G., Gołębiewski, M., Slósarz, J., Grodkowska, K., Kostusiak, P., Sakowski, T., & Puppel, K. (2023). Organic Milk Production and Dairy Farming Constraints and Prospects under the Laws of the European Union. Animals, 13(9), 1–20. DOI: 10.3390/ani13091457 Search in Google Scholar

Hayek, S. A., Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 86(4), 490–502. DOI: 10.1017/S002202991900075X Search in Google Scholar

Iskandar, C. F., Cailliez-Grimal, C., Borges, F., & Revol-Junelles, A. M. (2019). Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science and Technology, 88(February), 121–132. DOI: 10.1016/j.tifs.2019.03.020 Search in Google Scholar

Jenkins, J. K., & Courtney, P. D. (2003). Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Canadian Journal of Microbiology, 49(1), 51–57. DOI: 10.1139/w03-003 Search in Google Scholar

Jugert, C. S., Didier, A., Plötz, M., & Jessberger, N. (2023). Strain-specific Antimicrobial Activity of Lactoferrin-based Food Supplements. Journal of Food Protection. DOI: 10.1016/j.jfp.2023.100153 Search in Google Scholar

Kankaanpää, P. E., Salminen, S. J., Isolauri, E., & Lee, Y. K. (2001). The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiology Letters, 194(2), 149–153. DOI: Pasi E. Kankaanpää, Seppo J. Salminen, Erika Isolauri, Yuan Kun Lee, The influence of polyunshttps://doi.org/10.1111/j.1574-6968.2001.tb09460.x Search in Google Scholar

Khorshidian, N., Khanniri, E., Koushki, M. R., Sohrabvandi, S., & Yousefi, M. (2022). An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Frontiers in Nutrition, 9(March). DOI: 10.3389/fnut.2022.833618 Search in Google Scholar

Kim, W. S., Ohashi, M., Tanaka, T., Kumura, H., Kim, G. Y., Kwon, I. K., … Shimazaki, K. I. (2004). Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. BioMetals, 17(3), 279–283. DOI: 10.1023/B:BIOM.0000027705.57430.f1 Search in Google Scholar

Kitano, N., Isobe, N., Noda, J., & Takahashi, T. (2020). Concentration patterns of antibacterial factors and immunoglobulin A antibody in foremilk fractions of healthy cows. Animal Science Journal, 91(1), 1–5. DOI: 10.1111/asj.13372 Search in Google Scholar

Kouřimská, L., Legarová, V., Panovská, Z., & Pánek, J. (2014). Quality of cows’ milk from organic and conventional farming. Czech Journal of Food Sciences, 32(4), 398–405. DOI: 10.17221/510/2012-cjfs Search in Google Scholar

Kozáková, D., Holubová, J., Plocková, M., Chumchalová, J., & Čurda, L. (2005). Impedance measurement of growth of lactic acid bacteria in the presence of nisin and lysozyme. European Food Research and Technology, 221(6), 774–778. DOI: 10.1007/s00217-005-0026-x Search in Google Scholar

Król, J., Litwińczuk, Z., Brodziak, A., & Barłowska, J. (2010). Lactoferrin, lysozyme and immunoglobulin G content in milk of four breeds of cows managed under intensive production system. Polish Journal of Veterinary Sciences, 13(2), 357–361. Search in Google Scholar

Kucevic, D., Trivunovic, S., Bogdanovic, V., Cobanovic, K., Jankovic, D., & Stanojevic, D. (2016). Composition of raw milk from conventional and organic dairy farming. Biotechnology in Animal Husbandry, 32(2), 133–143. DOI: 10.2298/bah1602133k Search in Google Scholar

Kuczyńska, B., Puppel, K., Gołȩbiewski, M., Metera, E., Sakowski, T., & Słoniewski, K. (2012). Differences in whey protein content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. Journal of the Science of Food and Agriculture, 92(14), 2899–2904. DOI: 10.1002/jsfa.5663 Search in Google Scholar

Lambotte, M., De Cara, S., Brocas, C., & Bellassen, V. (2023). Organic farming offers promising mitigation potential in dairy systems without compromising economic performances. Journal of Environmental Management, 334(December 2022). DOI: 10.1016/j.jenvman.2023.117405 Search in Google Scholar

Linehan, K., Patangia, D. V., Ross, R. P., & Stanton, C. (2024). Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods, 13(4), 1–23. DOI: 10.3390/foods13040550 Search in Google Scholar

Liu, N., Pustjens, A. M., Erasmus, S. W., Yang, Y., Hettinga, K., & van Ruth, S. M. (2020). Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chemistry, 314(December 2019), 126153. DOI: 10.1016/j.foodchem.2019.126153 Search in Google Scholar

Manuelian, C. L., Vigolo, V., Burbi, S., Righi, F., Simoni, M., & De Marchi, M. (2022). Detailed comparison between organic and conventional milk from Holstein-Friesian dairy herds in Italy. Journal of Dairy Science, 105(7), 5561–5572. DOI: 10.3168/jds.2021-21465 Search in Google Scholar

Martini, M., Altomonte, I., Sodi, I., Vasylieva, Y., & Salari, F. (2023). Sterol, tocopherol, and bioactive fatty acid differences between conventional, high-quality, and organic cow milk. Journal of Dairy Science, 106(12), 8239–8248. DOI: 10.3168/jds.2023-23378 Search in Google Scholar

Masschalck, B., Van Houdt, R., Van Haver, E. G. R., & Michiels, W. C. (2001). Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Applied and Environmental Microbiology, 67(1), 339–344. DOI: 10.1128/AEM.67.1.339-344.2001 Search in Google Scholar

Mehra, R., Marnila, P., & Korhonen, H. (2006). Milk immunoglobulins for health promotion. International Dairy Journal, 16(11), 1262–1271. DOI: 10.1016/j.idairyj.2006.06.003 Search in Google Scholar

Neviani, E., Carminati, D., Veaux, M., Hermier, J., & Giraffa, G. (1991). Characterization of Lactobacillus helveticus strains resistant to lysozyme . Le Lait, 71(1), 65–73. DOI: 10.1051/lait:199115 Search in Google Scholar

Ohlsson, J. A., Johansson, M., Hansson, H., Abrahamson, A., Byberg, L., Smedman, A., … Lundh, Å. (2017). Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. International Dairy Journal, 73, 151–154. DOI: 10.1016/j.idairyj.2017.06.004 Search in Google Scholar

Ozturkoglu-Budak, S. (2018). Effect of different treatments on the stability of lysozyme, lactoferrin and β-lactoglobulin in donkey’s milk. International Journal of Dairy Technology, 71(1), 36–45. DOI: 10.1111/1471-0307.12380 Search in Google Scholar

Partanen, L., Marttinen, N., & Alatossava, T. (2001). Fats and Fatty Acids as Growth Factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology, 24(4), 500–506. DOI: 10.1078/0723-2020-00078 Search in Google Scholar

Priyadarshini, S., & Kansal, V. K. (2002). Lysozyme activity in buffalo milk: Effect of lactation period, parity, mastitis, season in India, pH and milk processing heat treatment. Asian-Australasian Journal of Animal Sciences, 15(6), 895–899. DOI: 10.5713/ajas.2002.895 Search in Google Scholar

Renchinthand, G., Bae, H. C., & Nam, M. S. (2007). Measurement of lactoferrin, IgA, IgG<inf>1</inf>, IgG<inf>2</inf>, antibacterial activity, and lactic acid bacterial growth in holstein colostrum. Korean Journal for Food Science of Animal Resources, 27(4), 522–530. DOI: 10.5851/kosfa.2007.27.4.522 Search in Google Scholar

Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. DOI: 10.3168/jds.2019-17092 Search in Google Scholar

Róin, N. R., Lokuge, G. M. S., Fredsted, M. B., Sundekilde, U. K., Larsen, M. K., Larsen, L. B., & Poulsen, N. A. (2023). Variations in fatty acids, micronutrients and metabolites in discrete milk lines of Danish dairy milk. International Dairy Journal, 147. DOI: 10.1016/j.idairyj.2023.105786 Search in Google Scholar

Ruska, D., Radenkovs, V., Juhnevica-Radenkova, K., Rubene, D., Ciprovica, I., & Zagorska, J. (2023). The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals, 13(5). DOI: 10.3390/ani13050815 Search in Google Scholar

Sabunevica, S., & Zagorska, J. (2023). Organic Milk as Medium for Lactic Acid Bacteria Growth: A Review. Rural Sustainability Research, 49(344), 73–86. DOI: 10.2478/plua-2023-0010 Search in Google Scholar

Scharfen, E. C., Mills, D. A., & Maga, E. A. (2007). Use of human lysozyme transgenic goat milk in cheese making: Effects on lactic acid bacteria performance. Journal of Dairy Science, 90(9), 4084–4091. DOI: 10.3168/jds.2006-808 Search in Google Scholar

Schwendel, B. H., Wester, T. J., Morel, P. C. H., Tavendale, M. H., Deadman, C., Shadbolt, N. M., & Otter, D. E. (2015). Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. Journal of Dairy Science, 98(2), 721–746. DOI: 10.3168/jds.2014-8389 Search in Google Scholar

Sodini, I., Lucas, A., Oliveira, M. N., Remeuf, F., & Corrieu, G. (2002). Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. Journal of Dairy Science, 85(10), 2479–2488. DOI: 10.3168/jds.S0022-0302(02)74330-0 Search in Google Scholar

Wagner, K., Brinkmann, J., Bergschmidt, A., Renziehausen, C., & March, S. (2021). The effects of farming systems (organic vs. conventional) on dairy cow welfare, based on the Welfare Quality® protocol. Animal, 15(8), 100301. DOI: 10.1016/j.animal.2021.100301 Search in Google Scholar

Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., … Geng, W. (2021). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9(May), 1–19. DOI: 10.3389/fbioe.2021.612285 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Botanica, Ecologia