[
Ayivi, R. D., Ibrahim, S. A., Krastanov, A., Somani, A., & Siddiqui, S. A. (2022). The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii ssp. bulgaricus. Journal of Dairy Science, 105(10), 7986–7997. DOI: 10.3168/jds.2022-21971
]Search in Google Scholar
[
Azzolini, M., Tosi, E., Veneri, G., & Zapparoli, G. (2010). Evaluating the efficacy of lysozyme against lactic acid bacteria under different winemaking scenarios. South African Journal of Enology and Viticulture, 31(2), 99–105. DOI: 10.21548/31-2-1406
]Search in Google Scholar
[
Bartkiene, E., Lele, V., Sakiene, V., Zavistanaviciute, P., Ruzauskas, M., Stankevicius, A., … Juodeikiene, G. (2020). Fermented, ultrasonicated, and dehydrated bovine colostrum: Changes in antimicrobial properties and immunoglobulin content. Journal of Dairy Science, 103(2), 1315–1323. DOI: 10.3168/jds.2019-16357
]Search in Google Scholar
[
Beal, C., Fonseca, F., & Corrieu, G. (2001). Resistance to freezing and frozen storage of streptococcus thermophilus is related to membrane fatty acid composition. Journal of Dairy Science, 84(11), 2347–2356. DOI: 10.3168/jds.S0022-0302(01)74683-8
]Search in Google Scholar
[
Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular, 1121(1–2), 130–136. DOI: 10.1016/0167-4838(92)90346-F
]Search in Google Scholar
[
Benkerroum, N. (2008). Antimicrobial activity of lysozyme with special relevance to milk. African Journal of Biotechnology, 7(25), 4856–4867.
]Search in Google Scholar
[
Borgonovi, T. F., Virgolin, L. B., Janzantti, N. S., Casarotti, S. N., & Penna, A. L. B. (2022). Fruit bioactive compounds: Effect on lactic acid bacteria and on intestinal microbiota. Food Research International, 161(February). DOI: 10.1016/j.foodres.2022.111809
]Search in Google Scholar
[
Breza-Boruta, B., Ligocka, A., & Bauza-kaszewska, J. (2022). Natural Bioactive Compounds in Organic and Conventional Fermented Foods. Molecules.
]Search in Google Scholar
[
Brodziak, A., Król, J., Litwińczuk, Z., & Barłowska, J. (2018). Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. International Journal of Dairy Technology, 71(2), 321–332. DOI: 10.1111/1471-0307.12462
]Search in Google Scholar
[
Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., Sanderson, R., & Leifert, C. (2008). Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. Journal of the Science of Food and Agriculture, 88(8), 1431–1441. DOI: 10.1002/jsfa.3235
]Search in Google Scholar
[
Carlsson, Å., Björck, L., & Persson, K. (1989). Lactoferrin and Lysozyme in Milk During Acute Mastitis and Their Inhibitory Effect in Delvotest P. Journal of Dairy Science, 72(12), 3166–3175. DOI: 10.3168/jds.S0022-0302(89)79475-3
]Search in Google Scholar
[
Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progress in Lipid Research, 82, 1–28. DOI: 10.1016/j.plipres.2021.101093
]Search in Google Scholar
[
Cheng, J. B., Wang, J. Q., Bu, D. P., Liu, G. L., Zhang, C. G., Wei, H. Y., … Wang, J. Z. (2008). Factors affecting the lactoferrin concentration in bovine milk. Journal of Dairy Science, 91(3), 970–976. DOI: 10.3168/jds.2007-0689
]Search in Google Scholar
[
Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M., & Etter, L. (2008). Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. International Dairy Journal, 18(10–11), 976–982. DOI: 10.1016/j.idairyj.2008.05.010
]Search in Google Scholar
[
Costa, A., Goi, A., Penasa, M., Nardino, G., Posenato, L., & De Marchi, M. (2021). Variation of immunoglobulins G, A, and M and bovine serum albumin concentration in Holstein cow colostrum. Animal, 15(7), 100299. DOI: 10.1016/j.animal.2021.100299
]Search in Google Scholar
[
Costa, M. P. D., Frasao, S., B., Lima, B. R. C., Rodrigues, B. L., & Junior, C. A. C. (2016). Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat’s milk yogurts fermentation. Talanta, 152, 162–170. DOI: 10.1016/j.talanta.2016.01.061
]Search in Google Scholar
[
D’Incecco, P., Gatti, M., Hogenboom, J. A., Bottari, B., Rosi, V., Neviani, E., & Pellegrino, L. (2016). Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiology, 57, 16–22. DOI: 10.1016/j. fm.2015.11.020
]Search in Google Scholar
[
Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., & Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 89, 77–85. DOI: 10.1016/j.idairyj.2018.09.003
]Search in Google Scholar
[
Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. DOI: 10.1007/s00253-009-2355-3
]Search in Google Scholar
[
Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum, Technologia Alimentaria, 13(1), 5–25. DOI: 10.17306/j.afs.2014.1.1
]Search in Google Scholar
[
Ellis, K. A., Innocent, G., Grove-White, D., Cripps, P., McLean, W. G., Howard, C. V., & Mihm, M. (2006). Comparing the fatty acid composition of organic and conventional milk. Journal of Dairy Science, 89(6), 1938–1950. DOI: 10.3168/jds. S0022-0302(06)72261-5
]Search in Google Scholar
[
Florence, A. Béal, C., da Silva, R. C., & Oliveira, M. N. (2014). Survival of three Bifidobacterium animalis subsp. lactis strains is related to transvaccenic and α-linolenic acids contents in organic fermented milks. Lwt, 56(2), 290–295. DOI: 10.1016/j.lwt.2013.11.036
]Search in Google Scholar
[
Florence, A. C. R., Béal, C., Silva, R. C., Bogsan, C. S. B., Pilleggi, A. L. O. S., Gioielli, L. A., & Oliveira, M. N. (2012). Fatty acid profile, transoctadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chemistry, 135(4), 2207–2214. DOI: 10.1016/j.foodchem.2012.07.026
]Search in Google Scholar
[
Franco, I., Castillo, E., Pérez, M. D., Calvo, M., & Sánchez, L. (2010). Effect of bovine lactoferrin addition to milk in yogurt manufacturing. Journal of Dairy Science, 93(10), 4480–4489. DOI: 10.3168/jds.2009-3006
]Search in Google Scholar
[
Givens, D. I., & Lovegrove, J. A. (2016). Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta- and redundancy analyses. British Journal of Nutrition, 116(1), 1–2. DOI: 10.1017/S0007114516001604
]Search in Google Scholar
[
Gomes, S. I. F., van Bodegom, P. M., van Agtmaal, M., Soudzilovskaia, N. A., Bestman, M., Duijm, E., … van Eekeren, N. (2020). Microbiota in Dung and Milk Differ Between Organic and Conventional Dairy Farms. Frontiers in Microbiology, 11(July), 1–12. DOI: 10.3389/fmicb.2020.01746
]Search in Google Scholar
[
Gomes, V., Madureira, K. M., Soriano, S., Libera, A. M. M. P. Della, Blagitz, M. G., & Benesi, F. J. (2011). Factors affecting immunoglobulin concentration in colostrum of healthy holstein cows immediately after delivery. Pesquisa Veterinaria Brasileira, 31(SUPPL. 1), 53–56. DOI: 10.1590/S0100-736X2011001300009
]Search in Google Scholar
[
Goulding, D. A., O’Regan, J., Bovetto, L., O’Brien, N. M., & O’Mahony, J. A. (2021). Influence of thermal processing on the physicochemical properties of bovine lactoferrin. International Dairy Journal, 119, 105001. DOI: 10.1016/j.idairyj.2021.105001
]Search in Google Scholar
[
Grodkowski, G., Gołębiewski, M., Slósarz, J., Grodkowska, K., Kostusiak, P., Sakowski, T., & Puppel, K. (2023). Organic Milk Production and Dairy Farming Constraints and Prospects under the Laws of the European Union. Animals, 13(9), 1–20. DOI: 10.3390/ani13091457
]Search in Google Scholar
[
Hayek, S. A., Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 86(4), 490–502. DOI: 10.1017/S002202991900075X
]Search in Google Scholar
[
Iskandar, C. F., Cailliez-Grimal, C., Borges, F., & Revol-Junelles, A. M. (2019). Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science and Technology, 88(February), 121–132. DOI: 10.1016/j.tifs.2019.03.020
]Search in Google Scholar
[
Jenkins, J. K., & Courtney, P. D. (2003). Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Canadian Journal of Microbiology, 49(1), 51–57. DOI: 10.1139/w03-003
]Search in Google Scholar
[
Jugert, C. S., Didier, A., Plötz, M., & Jessberger, N. (2023). Strain-specific Antimicrobial Activity of Lactoferrin-based Food Supplements. Journal of Food Protection. DOI: 10.1016/j.jfp.2023.100153
]Search in Google Scholar
[
Kankaanpää, P. E., Salminen, S. J., Isolauri, E., & Lee, Y. K. (2001). The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiology Letters, 194(2), 149–153. DOI: Pasi E. Kankaanpää, Seppo J. Salminen, Erika Isolauri, Yuan Kun Lee, The influence of polyunshttps://doi.org/10.1111/j.1574-6968.2001.tb09460.x
]Search in Google Scholar
[
Khorshidian, N., Khanniri, E., Koushki, M. R., Sohrabvandi, S., & Yousefi, M. (2022). An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Frontiers in Nutrition, 9(March). DOI: 10.3389/fnut.2022.833618
]Search in Google Scholar
[
Kim, W. S., Ohashi, M., Tanaka, T., Kumura, H., Kim, G. Y., Kwon, I. K., … Shimazaki, K. I. (2004). Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. BioMetals, 17(3), 279–283. DOI: 10.1023/B:BIOM.0000027705.57430.f1
]Search in Google Scholar
[
Kitano, N., Isobe, N., Noda, J., & Takahashi, T. (2020). Concentration patterns of antibacterial factors and immunoglobulin A antibody in foremilk fractions of healthy cows. Animal Science Journal, 91(1), 1–5. DOI: 10.1111/asj.13372
]Search in Google Scholar
[
Kouřimská, L., Legarová, V., Panovská, Z., & Pánek, J. (2014). Quality of cows’ milk from organic and conventional farming. Czech Journal of Food Sciences, 32(4), 398–405. DOI: 10.17221/510/2012-cjfs
]Search in Google Scholar
[
Kozáková, D., Holubová, J., Plocková, M., Chumchalová, J., & Čurda, L. (2005). Impedance measurement of growth of lactic acid bacteria in the presence of nisin and lysozyme. European Food Research and Technology, 221(6), 774–778. DOI: 10.1007/s00217-005-0026-x
]Search in Google Scholar
[
Król, J., Litwińczuk, Z., Brodziak, A., & Barłowska, J. (2010). Lactoferrin, lysozyme and immunoglobulin G content in milk of four breeds of cows managed under intensive production system. Polish Journal of Veterinary Sciences, 13(2), 357–361.
]Search in Google Scholar
[
Kucevic, D., Trivunovic, S., Bogdanovic, V., Cobanovic, K., Jankovic, D., & Stanojevic, D. (2016). Composition of raw milk from conventional and organic dairy farming. Biotechnology in Animal Husbandry, 32(2), 133–143. DOI: 10.2298/bah1602133k
]Search in Google Scholar
[
Kuczyńska, B., Puppel, K., Gołȩbiewski, M., Metera, E., Sakowski, T., & Słoniewski, K. (2012). Differences in whey protein content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. Journal of the Science of Food and Agriculture, 92(14), 2899–2904. DOI: 10.1002/jsfa.5663
]Search in Google Scholar
[
Lambotte, M., De Cara, S., Brocas, C., & Bellassen, V. (2023). Organic farming offers promising mitigation potential in dairy systems without compromising economic performances. Journal of Environmental Management, 334(December 2022). DOI: 10.1016/j.jenvman.2023.117405
]Search in Google Scholar
[
Linehan, K., Patangia, D. V., Ross, R. P., & Stanton, C. (2024). Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods, 13(4), 1–23. DOI: 10.3390/foods13040550
]Search in Google Scholar
[
Liu, N., Pustjens, A. M., Erasmus, S. W., Yang, Y., Hettinga, K., & van Ruth, S. M. (2020). Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chemistry, 314(December 2019), 126153. DOI: 10.1016/j.foodchem.2019.126153
]Search in Google Scholar
[
Manuelian, C. L., Vigolo, V., Burbi, S., Righi, F., Simoni, M., & De Marchi, M. (2022). Detailed comparison between organic and conventional milk from Holstein-Friesian dairy herds in Italy. Journal of Dairy Science, 105(7), 5561–5572. DOI: 10.3168/jds.2021-21465
]Search in Google Scholar
[
Martini, M., Altomonte, I., Sodi, I., Vasylieva, Y., & Salari, F. (2023). Sterol, tocopherol, and bioactive fatty acid differences between conventional, high-quality, and organic cow milk. Journal of Dairy Science, 106(12), 8239–8248. DOI: 10.3168/jds.2023-23378
]Search in Google Scholar
[
Masschalck, B., Van Houdt, R., Van Haver, E. G. R., & Michiels, W. C. (2001). Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Applied and Environmental Microbiology, 67(1), 339–344. DOI: 10.1128/AEM.67.1.339-344.2001
]Search in Google Scholar
[
Mehra, R., Marnila, P., & Korhonen, H. (2006). Milk immunoglobulins for health promotion. International Dairy Journal, 16(11), 1262–1271. DOI: 10.1016/j.idairyj.2006.06.003
]Search in Google Scholar
[
Neviani, E., Carminati, D., Veaux, M., Hermier, J., & Giraffa, G. (1991). Characterization of Lactobacillus helveticus strains resistant to lysozyme . Le Lait, 71(1), 65–73. DOI: 10.1051/lait:199115
]Search in Google Scholar
[
Ohlsson, J. A., Johansson, M., Hansson, H., Abrahamson, A., Byberg, L., Smedman, A., … Lundh, Å. (2017). Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. International Dairy Journal, 73, 151–154. DOI: 10.1016/j.idairyj.2017.06.004
]Search in Google Scholar
[
Ozturkoglu-Budak, S. (2018). Effect of different treatments on the stability of lysozyme, lactoferrin and β-lactoglobulin in donkey’s milk. International Journal of Dairy Technology, 71(1), 36–45. DOI: 10.1111/1471-0307.12380
]Search in Google Scholar
[
Partanen, L., Marttinen, N., & Alatossava, T. (2001). Fats and Fatty Acids as Growth Factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology, 24(4), 500–506. DOI: 10.1078/0723-2020-00078
]Search in Google Scholar
[
Priyadarshini, S., & Kansal, V. K. (2002). Lysozyme activity in buffalo milk: Effect of lactation period, parity, mastitis, season in India, pH and milk processing heat treatment. Asian-Australasian Journal of Animal Sciences, 15(6), 895–899. DOI: 10.5713/ajas.2002.895
]Search in Google Scholar
[
Renchinthand, G., Bae, H. C., & Nam, M. S. (2007). Measurement of lactoferrin, IgA, IgG<inf>1</inf>, IgG<inf>2</inf>, antibacterial activity, and lactic acid bacterial growth in holstein colostrum. Korean Journal for Food Science of Animal Resources, 27(4), 522–530. DOI: 10.5851/kosfa.2007.27.4.522
]Search in Google Scholar
[
Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. DOI: 10.3168/jds.2019-17092
]Search in Google Scholar
[
Róin, N. R., Lokuge, G. M. S., Fredsted, M. B., Sundekilde, U. K., Larsen, M. K., Larsen, L. B., & Poulsen, N. A. (2023). Variations in fatty acids, micronutrients and metabolites in discrete milk lines of Danish dairy milk. International Dairy Journal, 147. DOI: 10.1016/j.idairyj.2023.105786
]Search in Google Scholar
[
Ruska, D., Radenkovs, V., Juhnevica-Radenkova, K., Rubene, D., Ciprovica, I., & Zagorska, J. (2023). The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals, 13(5). DOI: 10.3390/ani13050815
]Search in Google Scholar
[
Sabunevica, S., & Zagorska, J. (2023). Organic Milk as Medium for Lactic Acid Bacteria Growth: A Review. Rural Sustainability Research, 49(344), 73–86. DOI: 10.2478/plua-2023-0010
]Search in Google Scholar
[
Scharfen, E. C., Mills, D. A., & Maga, E. A. (2007). Use of human lysozyme transgenic goat milk in cheese making: Effects on lactic acid bacteria performance. Journal of Dairy Science, 90(9), 4084–4091. DOI: 10.3168/jds.2006-808
]Search in Google Scholar
[
Schwendel, B. H., Wester, T. J., Morel, P. C. H., Tavendale, M. H., Deadman, C., Shadbolt, N. M., & Otter, D. E. (2015). Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. Journal of Dairy Science, 98(2), 721–746. DOI: 10.3168/jds.2014-8389
]Search in Google Scholar
[
Sodini, I., Lucas, A., Oliveira, M. N., Remeuf, F., & Corrieu, G. (2002). Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. Journal of Dairy Science, 85(10), 2479–2488. DOI: 10.3168/jds.S0022-0302(02)74330-0
]Search in Google Scholar
[
Wagner, K., Brinkmann, J., Bergschmidt, A., Renziehausen, C., & March, S. (2021). The effects of farming systems (organic vs. conventional) on dairy cow welfare, based on the Welfare Quality® protocol. Animal, 15(8), 100301. DOI: 10.1016/j.animal.2021.100301
]Search in Google Scholar
[
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., … Geng, W. (2021). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9(May), 1–19. DOI: 10.3389/fbioe.2021.612285
]Search in Google Scholar