INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Brancaccio P., Lippi G., Maffulli N. (2020). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine 48(6), 757-767. DOI: 10.1515/CCLM.2010.179.10.1515/CCLM.2010.17920518645 Search in Google Scholar

2. Chazaud B. (2016). Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunology and Cell Biology 94(2), 140-145. DOI: 10.1038/icb.2015.97.10.1038/icb.2015.9726526620 Search in Google Scholar

3. Powers S.K., Jackson M.J. (2008). Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiological Reviews 88(4), 1243-1276. DOI: 10.1152/physrev.00031.2007.10.1152/physrev.00031.2007290918718923182 Search in Google Scholar

4. Howatson G., van Someren K.A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine 38(6), 483-503. DOI: 10.2165/00007256-200838060-00004.10.2165/00007256-200838060-0000418489195 Search in Google Scholar

5. Rojano D., Molina A., Moya H., Berral F.J. (2021). Tart cherry and pomegranate supplementations enhance recovery from exercise-induced muscle damage: a systematic review. Biology of Sport 38(1), 97-111. DOI: 10.5114/biol-sport.2020.97069. Search in Google Scholar

6. Fernández-Lázaro D., Mielgo-Ayuso J., Seco J., Córdova A., Caballero A., Fernández-Lázaro C. (2020). Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients 12(2), 501. DOI: 10.3390/nu12020501.10.3390/nu12020501707127932075287 Search in Google Scholar

7. Luti S., Modesti A., Modesti P.A. (2020). Inflammation, peripheral signals and redox homeostasis in athletes who practice different sports. Antioxidants (Basel) 9(11), 1065. DOI: 10.3390/antiox9111065.10.3390/antiox9111065769322133143147 Search in Google Scholar

8. Nowakowska A., Kostrzewa-Nowak D., Buryta R., Nowak R. (2019). Blood biomarkers of recovery efficiency in soccer players. International Journal of Environmental Research and Public Health 16(18), 3279. DOI: 10.3390/ijerph16183279.10.3390/ijerph16183279676588331500120 Search in Google Scholar

9. Nedelec M., McCall A., Carling C., Legall F., Berthoin S., Dupont G. (2012). Recovery in soccer: part I - post-match fatigue and time course of recovery. Sports Medicine 42(12), 997-1015. DOI: 10.2165/11635270-000000000-00000.10.2165/11635270-000000000-0000023046224 Search in Google Scholar

10. Varley M.C., Aughey R.J. (2013). Acceleration profiles in elite Australian soccer. International Journal of Sports Medicine 34(1), 34-39. DOI: 10.1055/s-0032-1316315.10.1055/s-0032-131631522895869 Search in Google Scholar

11. Andersson H., Ekblom B., Krustrup P. (2008). Elite football on artificial turf versus natural grass: movement patterns, technical standards, and player impressions. Journal of Sports Science 26(2), 113-122. DOI: 10.1080/02640410701422076.10.1080/0264041070142207617852688 Search in Google Scholar

12. Souglis A., Bogdanis G.C., Giannopoulou I., Papadopoulos Ch., Apostolidis N. (2015). Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Research in Sports Medicine 23(1), 59-72. DOI: 10.1080/15438627.2014.975814.10.1080/15438627.2014.97581425630247 Search in Google Scholar

13. Ferreira J.C., Da Silva-Carvalho R.G., Moreira-Barroso T., Szmuchrowski L.A., Sledziewski D. (2011). Effect of different types of recovery on blood lactate removal after maximum exercise. Polish Journal of Sport and Tourism 18, 105-111. DOI: 10.2478/v10197-011-0008-4.10.2478/v10197-011-0008-4 Search in Google Scholar

14. Fatouros I.G., Chatzinikolaou A., Douroudos I.I., Nikolaidis M.G., Kyparos A. et al. (2010). Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. Journal of Strength and Conditioning Research 24(12), 3278-3286. DOI: 10.1519/JSC.0b013e3181b60444.10.1519/JSC.0b013e3181b6044419996787 Search in Google Scholar

15. Silva J.R., Ascensao A., Marques F., Seabra A., Rebelo A., Magalhaes J. (2013). Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. European Journal of Applied Physiology 113(9), 2193-2201. DOI: 10.1007/s00421-013-2633-8.10.1007/s00421-013-2633-823661147 Search in Google Scholar

16. Altarriba-Bartes A., Peña J., Vicens-Bordas J., Casals M., Peirau X., Calleja-González J. (2021). The use of recovery strategies by Spanish first division soccer teams: a cross-sectional survey. The Physician and Sportsmedicine 49(3), 297-307. DOI: 10.1080/00913847.2020.1819150.10.1080/00913847.2020.181915032882156 Search in Google Scholar

17. Deutz N.E.P., Ashurst I., Ballesteros M.D., Bear D.E., Cruz-Jentoft A.J. et al. (2019). The underappreciated role of low muscle mass in the management of malnutrition. Journal of the American Medical Directors Association 20(1), 22-27. DOI: 10.1016/j.jamda.2018.11.021.10.1016/j.jamda.2018.11.02130580819 Search in Google Scholar

18. Bosy-Westphal A., Danielzik S., Dörhöfer R.P., Later W., Wiese S., Müller M.J. (2006). Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition 30(4), 309-316. DOI: 10.1177/0148607106030004309.10.1177/014860710603000430916804128 Search in Google Scholar

19. Earthman C.P. (2015). Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. Journal of Parenteral and Enteral Nutrition 39(7), 787-822. DOI: 10.1177/0148607115595227.10.1177/014860711559522726287016 Search in Google Scholar

20. Koury J.C., Trugo N.M.F., Torres A.G. (2014). Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes. International Journal of Sports Physiology and Performance 9(5), 798-804. DOI: 10.1123/ijspp.2013-0397.10.1123/ijspp.2013-039724414089 Search in Google Scholar

21. Norman K., Stobäus N., Pirlich M., Bosy-Westphal A. (2012). Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clinical Nutrition 31(6), 854-861. DOI: 10.1016/j. clnu.2012.05.008. Search in Google Scholar

22. Gonzalez M.C., Barbosa-Silva T.G., Bielemann R.M., Gallagher D., Heymsfield S.B. (2016). Phase angle and its determinants in healthy subjects: influence of body composition. American Journal of Clinical Nutrition 103(3), 712-716. DOI: 10.3945/ajcn.115.116772.10.3945/ajcn.115.116772654622926843156 Search in Google Scholar

23. Mundstock E., Amaral M.A., Baptista R.R., Sarria E.E., Grecco R.R. et al. (2019). Association between phase angle from bioelectrical impedance analysis and level of physical activity: systematic review and meta-analysis. Clinical Nutrition 38(4), 1504-1510. DOI: 10.1016/j.clnu.2018.08.031.10.1016/j.clnu.2018.08.03130224304 Search in Google Scholar

24. Genton L., Mareschal J., Norman K., Karsegard V.L., Delsoglio M. et al. (2020). Association of phase angle and running performance. Clinical Nutrition ESPEN 37, 65-68. DOI: 10.1016/j.clnesp.2020.03.020.10.1016/j.clnesp.2020.03.02032359757 Search in Google Scholar

25. Levi-Micheli M., Pagani L., Marella M., Gulisano M., Piccoli A. et al. (2014). Bioimpedance and impedance vector patterns as predictors of league level in male soccer players. International Journal of Sports Physiology and Performance 9(3), 532-539. DOI: 10.1123/ijspp.2013-0119.10.1123/ijspp.2013-011923881291 Search in Google Scholar

26. Tomeleri C.M., Ribeiro A.S., Cavaglieri C.R., Deminice R., Schoenfeld B.J. et al. (2018). Correlations between resistance training-induced changes on phase angle and biochemical markers in older women. Scandinavian Journal of Medicine & Science in Sports 28(10), 2173-2182. DOI: 10.1111/sms.13232.10.1111/sms.1323229858504 Search in Google Scholar

27. Carobene A., Røraas T., Sølvik U.Ø., Sverresdotter M., Sand-berg S. et al. (2017). Biological variation estimates obtained from 91 healthy study participants for 9 enzymes in serum. Clinical Chemistry 63(6), 1141-1150. DOI: 10.1373/clinchem.2016.269811.10.1373/clinchem.2016.26981128428356 Search in Google Scholar

28. Carobene A., Aarsand A.K., Guerra E., Bartlett W.A., Coşkun A. et al. (2019). European Biological Variation Study (Eu-BIVAS): Within- and between-subject biological variation data for 15 frequently measured proteins. Clinical Chemistry 65(8), 1031-1041. DOI: 10.1373/clinchem.2019.304618.10.1373/clinchem.2019.30461831171528 Search in Google Scholar

29. Aziz N., Detels R., Quint J.J., Gjertson D., Ryner T., Butch A.W. (2019). Biological variation of immunological blood biomarkers in healthy individuals and quality goals for bio-marker tests. BMC Immunology 20, ID: 33. DOI: 10.1186/s12865-019-0313-0.10.1186/s12865-019-0313-0674470731521107 Search in Google Scholar

30. Coskun A., Carobene A., Kilercik M., Serteser M., Sandberg S. et al. (2018). Within-subject and between-subject biological variation estimates of 21 hematological parameters in 30 healthy subjects. Clinical Chemistry and Laboratory Medicine 56(8), 1309-1318. DOI: 10.1515/cclm-2017-1155.10.1515/cclm-2017-115529605821 Search in Google Scholar

31. Hopkins W., Marshall S., Batterham A., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise 41(1), 3-13. DOI: 10.1249/MSS.0b013e31818cb278.10.1249/MSS.0b013e31818cb27819092709 Search in Google Scholar

32. Beattie C.E., Fahey J.T., Pullinger S.A., Edwards B.J., Robertson C.M. (2021). The sensitivity of countermovement jump, creatine kinase and urine osmolality to 90-min of competitive match-play in elite English Championship football players 48-h post-match. Science and Medicine in Football 5(2), 165-173. DOI: 10.1080/24733938.2020.1828614.10.1080/24733938.2020.182861435077336 Search in Google Scholar

33. Ispiridilis I., Fatouros I.G., Jamurtas A.Z., Nikolaidis M.G., Michaidilis I. et al. (2008). Time-course of changes in inflammatory and performance responses following a soccer game. Clinical Journal of Sports Medicine 18(5), 423-431. DOI: 10.1097/JSM.0b013e3181818e0b.10.1097/JSM.0b013e3181818e0b18806550 Search in Google Scholar

34. Souglis A.G., Papapanagiotou A., Bogdanis G.C., Travlos A.K., Apostolidis N.G., Geladas N.D. (2015). Comparison of inflammatory responses to a soccer match between elite male and female players. Journal of Strength and Conditioning Research 29(5), 1227-1233. DOI: 10.1519/JSC.0000000000000767.10.1519/JSC.000000000000076725436628 Search in Google Scholar

35. Nescolarde L., Yanguas J., Lukaski H., Alomar X., Rosell-Ferrer J., Rodas G. (2013). Localized bioimpedance to assess muscle injury. Physiological Measurement 34(2), 237-245. DOI: 10.1088/0967-3334/34/2/237.10.1088/0967-3334/34/2/23723354019 Search in Google Scholar

36. Francavilla V.C., Bongiovanni T., Genovesi F., Minafra P., Francavilla G. (2015). Localized bioelectrical impedance analysis: How useful is it in the follow-up of muscle injury? A case report. Medicina dello Sport 68(2), 323-334. Search in Google Scholar

37. Beberashvili I., Azar A., Sinuani I., Kadoshi H., Shapiro G. et al. (2014). Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients. Nutrition 30(3), 297-304. DOI: 10.1016/j.nut.2013.08.017.10.1016/j.nut.2013.08.01724484680 Search in Google Scholar

eISSN:
2082-8799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, other