Accesso libero

Effect of Eccentric Cycling and Plyometric Training on Physiological and Performance Related Parameters of Trained Junior Track Cyclists

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Majumdar P., Sivaprakasam S. (2014). Effect of training load on some hormonal, hematological and biochemical profile of male cyclists. Annals of Applied Sport Science 2(2), 01-12.10.18869/acadpub.aassjournal.2.2.1Search in Google Scholar

2. Ebert T.R., Martin D.T., McDonald W., Victor J., Plummer J.,Withers R.T. (2005). Power output during women’s World Cup road cycle racing. European Journal of Applied Physiology 95(5), 529-536. DOI: 10.1007/s00421-005-0039-y.10.1007/s00421-005-0039-y16151832Search in Google Scholar

3. Haakonssen E., Barras M., Burke L.M., Jenkins D.G., Martin D.T. (2015). Body composition in female road and track endurance cyclists: Normative values and typical changes in female road and track endurance cyclists. European Journal of Sports Science 16(6), 645-653. DOI: 10.1080/17461391.2015.1084538.10.1080/17461391.2015.108453826366462Search in Google Scholar

4. Isner-Horobeti M.E., Dufour S.P., Vautravers P., Geny B., Coudeyre E., Richard R. (2013). Eccentric exercise training: modalities, applications and perspectives. Sports Medicine 43, 483-512.10.1007/s40279-013-0052-y23657934Search in Google Scholar

5. Kristoffersen M., Gundersen H., Leirdal S., Iversen V.V. (2014). Low cadence interval training at moderate intensity does not improve cycling performance in highly trained veteran cyclists. Frontiers in Physiology 31(5), 34.10.3389/fphys.2014.00034390770524550843Search in Google Scholar

6. Hody S., Croisier J.L., Bury T., Rogister B., Leprince P. (2019). Eccentric Muscle Contractions: Risks and Benefits. Frontiers in Physiology 10, 536. DOI: 10.3389/fphys.2019.00536.10.3389/fphys.2019.00536651003531130877Search in Google Scholar

7. Reeves N.D., Maganaris C.N., Longo S., Narici M.V. (2009). Differential adaptations to eccentric versus conventional resistance training in older humans. Experimental Physiology 94(7), 825-833.10.1113/expphysiol.2009.04659919395657Search in Google Scholar

8. Dufour S.P., Lampert E., Doutreleau S., Lonsdorfer-Wolf E., Billat V.L., Piquard F., Richard R. (2004). Eccentric cycle exercise: training application of specific circulatory adjustments. Medicine and Science in Sports and Exercise 36(11), 1900-6. DOI: 10.1249/01.mss.0000145441.80209.66.10.1249/01.MSS.0000145441.80209.6615514505Search in Google Scholar

9. Perrey S., Betik A., Candau R., Rouillon J.D., Hughson R.L. (2001). Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. Journal of Applied Physiology 91(5), 2135-42. DOI: 10.1152/jappl.2001.91.5.2135.10.1152/jappl.2001.91.5.213511641354Search in Google Scholar

10. Lechauve J.B., Perrault H., Aguilaniu B., Isner-Horobeti M.E., Martin V., Coudeyre E., Richard R. (2014). Breathing patterns during eccentric exercise. Respiratory Physiology and Neurobiology 202, 53-8.10.1016/j.resp.2014.07.00725083913Search in Google Scholar

11. Bonde-Petersen F., Knuttgen H.G., Henriksson J. (1972). Muscle metabolism during exercise with concentric and eccentric contractions. Journal of Applied Physiology 33(6), 792-5.10.1152/jappl.1972.33.6.7924643859Search in Google Scholar

12. Moysi J.S., Garcia-Romero J.C., Alvero-Cruz J.R., Vicente-Rodriguez G., Ara I., Dorado C., Calbet J.A.L. (2005). Effects of eccentric exercise on cycling efficiency. Canadian Journal of Applied Physiology 30(3), 259-275. DOI:10.1139/h05-119.10.1139/h05-11916129891Search in Google Scholar

13. Vogt M., Hoppeler H. (2014). Eccentric exercise – mechanisms and effects when used as training regime or training adjunct. Journal of Applied Physiology 116(11), 1446-1454.10.1152/japplphysiol.00146.201324505103Search in Google Scholar

14. Paulsen G., Eidsheim H.Ø., Helland C., Seynnes O., Solberg P.A., Rønnestad B.R. (2019). Eccentric cycling does not improve cycling performance in amateur cyclists. PLoS ONE 14 (1), e0208452. DOI:10.1371/journal. pone.0208452.10.1371/journal.pone.0208452Search in Google Scholar

15. Grerstner L. (2007). The effect of plyometric training on the performance of cyclists. Master degree thesis. Sports Science. Stellenbosch University.Search in Google Scholar

16. Markovic G., Mikulic P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine 40(10), 859-895.10.2165/11318370-000000000-0000020836583Search in Google Scholar

17. Chimera N.J., Swanik K.A., Swanik C.B., Straub S.J. (2004). Effects of plyometric training on muscle-activation strategies and performance in female athletes. Journal of Athletic Training 39(1), 24-31.Search in Google Scholar

18. Potteiger J.A., Lockwood R.H., Haub M.D., Dolezal B.A., Almuzaini K.S., Schroeder J.M., Zebas C. (1999). Muscle power and fiber characteristics following 8 weeks of plyometric training. Journal of Strength and Conditioning Research 13(3), 275-9.10.1519/00124278-199908000-00016Search in Google Scholar

19. Pellegrino J., Ruby B.C., Dumke C.L. (2016). Effect of plyometrics on the energy cost of running and MHC and titin isoforms. Medicine and Science in Sports and Exercise 48(1), 49-56.10.1249/MSS.000000000000074726258856Search in Google Scholar

20. Clark B., Costa V.P., O’Brien B.J., Guglielmo L.G., Paton C.D. (2014). Effects of a seven day overload-period of high-intensity training on performance and physiology of competitive cyclists. PLoS ONE 9(12), e115308. DOI: 10.1371/journal.pone.0115308.10.1371/journal.pone.0115308427074825521824Search in Google Scholar

21. Borg G. (1998). Borg’s perceived exertion and pain scales. Illinois: Human Kinetics.Search in Google Scholar

22. Hawes M.R., Martin A.D. (2001). Human body composition. In R. Eston, T. Reilly (eds), Kinanthropometric and exercise physiology laboratory manual: test, procedures and data. Volume 1: anthropometry (pp. 3-53). London: Routledge.Search in Google Scholar

23. Debnath M., Roy M., Chatterjee S., Dey S.K. (2016). Body composition profile of elite Indian male and female archers: a comparative study. International Journal of Health, Physical Education and Computer Science in Sports 23, 19-25.Search in Google Scholar

24. Sarkar S., Debnath M., Chatterjee S., Dey S.K. (2018). Assessment of nutritional status, body composition parameters and physiological profiles of young male taekwondo and wushu players. International Journal of Sports Science and Medicine 2(1), 1-7.10.29359/BJHPA.11.2.01Search in Google Scholar

25. Krasilshchikov O. (2014). Fitness profile of Malaysian adolescent squash players. Movement, Heath and Exercise 3, 39-47.10.15282/mohe.v3i0.16Search in Google Scholar

26. Davis B., Bull R., Roscoe J., Roscoe D. (2000). Physical Education and the study of sport. 4th ed. UK: London Harcourt Publishers Ltd.Search in Google Scholar

27. Bozkaya G., Ozgu E., Karaca B. (2010). The association between estimated average glucose levels and fasting plasma glucose levels. Clinics 65(11), 1077-1080.10.1590/S1807-59322010001100003299969821243275Search in Google Scholar

28. Rønnestad B.R., Hansen J., Hollan I., Ellefsen S. (2015). Strength training improves performance and pedaling characteristics in elite cyclists. Scandinavian Journal of Medicine Science and Sports 25, e89–e98.10.1111/sms.1225724862305Search in Google Scholar

29. White J.A., Ford M.A. (1983). The hydration and electrolyte maintenance properties of an experimental sports drink. British Journal of Sports Medicine 17, 51-58.10.1136/bjsm.17.1.5118590486850207Search in Google Scholar

30. Malá L., Bunc V., Malý T., Zemanová L. (2008). Current body composition of top senior judokas. Česká Kinantropologie 12(3), 85-81.Search in Google Scholar

31. Silva A.M., Fields D.A., Heymsfield S.B., Sardinha L.B. (2011). Relationship between changes in total-body water and fluid distribution with maximal forearm strength in elite judo athletes. Journal of Strength and Conditioning Research 25(9), 2488-2495.10.1519/JSC.0b013e3181fb3dfb21869630Search in Google Scholar

32. Reilly T., Secher N., Snell P., Williams C. (1990). Physiology of sports. London: Routledge.Search in Google Scholar

33. Burgomaster K.A., Cermak N.M., Phillips S.M. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292(5), R1970–R1976.10.1152/ajpregu.00503.200617303684Search in Google Scholar

34. Saltin B., Karlsson J. (1971). Muscle glycogen utilization during work of different intensities. In M.B. Pernow, B. Saltin (eds), Muscle Metabolism During Exercise, New York: Plenum.10.1007/978-1-4613-4609-8_25Search in Google Scholar

35. Mueller M., Breil F.A., Vogt M., Steiner R., Lippuner K., Popp A., et al. (2009). Different responses to eccentric and concentric training in older men and women. European Journal of Applied Physiology 107(2), 45-53.10.1007/s00421-009-1108-419543908Search in Google Scholar

36. Widrick J.J., Stelzer J.E., Shoepe T.C., Garner D.P. (2002). Functional properties of human muscle fibers after short-term resistance exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283(2), R408-R416. DOI: 10.1152/ajpregu.00120.2002.10.1152/ajpregu.00120.200212121854Search in Google Scholar

37. Neumann G., Shephard R.J., Astrand P.O. (1992). Endurance in sport. The Encyclopedia of Sports Medicine. Oxford: Blackwell Scientific Publications.10.1249/00005768-199212000-00015Search in Google Scholar

38. Kwon Y.H., Park J.W. (2011). Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: an fMRI study. Neuro Rehabilitation 29(3), 253-259.10.3233/NRE-2011-070122142759Search in Google Scholar

39. Docherty D., Sporer B. (2000). A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Medicine 30(6), 385-94.10.2165/00007256-200030060-0000111132121Search in Google Scholar

40. Aagaard P., Andersen J.L., Bennekou M., Larsson B., Olesen J.L., Crameri R., et al. (2011). Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scandinavian Journal of Medicine Science and Sports 21, e298-e307.10.1111/j.1600-0838.2010.01283.x21362056Search in Google Scholar

41. Henriksson J., Sundberg C.J. (2010). General effects of physical activity. In Professional Associations for Physical Activity (Sweden), Physical Activity in the Prevention and Treatment of Disease. Stockholm: Swedish National Institute of Public Health.Search in Google Scholar

42. Raastad T., Paulsen G., Refsnes P.E., Rønnestad B.R., Wisnes A.R. (2010). Strength Training – In theory and practice. Oslo: Gyldendal Undervisning.Search in Google Scholar

43. Fagard R., Aubert A., Lysens R., Staessen J., Vanhees L., Amery A. (1983). Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists. Circulation 67, 896-901.10.1161/01.CIR.67.4.896Search in Google Scholar

44. Fananapazir L., Ryan-Woolley B., Ward C., White J.A. (1982). Echocardiographic left ventricular dimensions in two groups of road race cyclists during a training season. British Journal of Sports Medicine 16, 113-114.10.1136/bjsm.16.2.113-aSearch in Google Scholar

45. Hawley J.A., Noakes T.D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology and Occupational Physiology 65, 79-83.10.1007/BF014662781505544Search in Google Scholar

46. McCarthy J.P., Agre J.C., Graf B.K., Pozniak M.A., Vailas A.C. (1995). Compatibility of adaptive responses with combining strength and endurance training. Medicine and Science in Sports and Exercise 27, 429-436.10.1249/00005768-199503000-00021Search in Google Scholar

eISSN:
2082-8799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, other