Accesso libero

The determination of virtual source position using convergent anti-trigonometric functions (arcCOS and arcSIN) method for scanning-passive scatter beam in carbon ion therapy

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Sawkey DL, Faddegon BA. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams. Med Phys. 2009;36:698-707. https://doi.org/10.1118/1.307054710.1118/1.3070547267367819378730 Search in Google Scholar

2. Sham E, Seuntjens J, Devic S, Podgorsak EB. Influence of focal spot on characteristics of very small diameter radiosurgical beams. Med Phys. 2008;35(7):3317-3330. https://doi.org/10.1118/1.293633510.1118/1.293633518697556 Search in Google Scholar

3. Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situation. Phys Med Biol. 2006;51(22):5785-5807. https://doi.org/10.1088/0031-9155/51/22/00510.1088/0031-9155/51/22/00517068365 Search in Google Scholar

4. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34(5):1665-1677. https://doi.org/10.1118/1.272731410.1118/1.272731417555248 Search in Google Scholar

5. Bortfeld T, Schlegel W. An analytical approximation of depth–dose distributions for theraputic proton beams. Phys Med Biol. 2007;41(8):1331-1339. https://doi.org/10.1088/0031-9155/41/8/00610.1088/0031-9155/41/8/0068858723 Search in Google Scholar

6. Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818-4853. https://doi.org/10.1118/1.279584210.1118/1.279584218196810 Search in Google Scholar

7. Kooy H, Rosenthal S, Engelsman M, et al. The prediction of output factors for spread-out proton Bragg peak fields in clinical practice Phys Med Biol. 2005;50(24):5847-5856. https://doi.org/10.1088/0031-9155/50/24/00610.1088/0031-9155/50/24/00616333159 Search in Google Scholar

8. Kooy H, Schaefer M, Rosenthal S, Bortfeld T. Monitor unit calculations for range-modulated spread-out Bragg peak fields. Phys Med Biol. 2003;48(17):2797-2808. https://doi.org/10.1088/0031-9155/48/17/30510.1088/0031-9155/48/17/30514516102 Search in Google Scholar

9. Petti PL. Differential-pencil-beam dose calculation for charged particles. Med Phys. 1992;19:137-149. https://doi.org/10.1118/1.59688710.1118/1.5968871320182 Search in Google Scholar

10. Verhaegen F, Seuntjens J. Monte Carlo modeling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107-R164. https://doi.org/10.1088/0031-9155/48/21/r0110.1088/0031-9155/48/21/R01 Search in Google Scholar

11. Russell KR, Isacsson U, Saxner M, et al. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol. 2000;45(1):9-27. https://doi.org/10.1088/0031-9155/45/1/30210.1088/0031-9155/45/1/30210661580 Search in Google Scholar

12. Reynaert N, van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem. 2007;76(4):643-686. https://doi.org/10.1016/j.radphyschem.2006.05.01510.1016/j.radphyschem.2006.05.015 Search in Google Scholar

13. Lei KM, Mak PI, Law MK, Martins RP. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications. Lab Chip. 2016;16(19):3664-3681. https://doi.org/10.1039/c6lc01002d10.1039/C6LC01002D Search in Google Scholar

14. Kang HG, Song JJ, Lee K et al. An investigation of medical radiation detection using CMOS image sensors in smartphones. Nuclear Inst and Methods in Physics Research, A. 2016;823:126-134. https://doi.org/10.1016/j.nima.2016.04.00710.1016/j.nima.2016.04.007 Search in Google Scholar

15. Dreindl R, Georg D, Stock M. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films. Zeitschrift für Medizinische Physik. 2014;24(2):153-163. https://doi.org/10.1016/j.zemedi.2013.08.00210.1016/j.zemedi.2013.08.00224055395 Search in Google Scholar

16. Kamomae T, Miyabe Y, Sawada A, et al. Simulation for improvement of system sensitivity of radiochromic film dosimetry with different band-pass filters and scanner light intensities. Radiol Phys Technol. 2011;4(2):140-147. https://doi.org/10.1007/s12194-011-0113-610.1007/s12194-011-0113-621409612 Search in Google Scholar

17. García-Garduño OA, Lárraga-Gutiérrez JM, Rodríguez-Villafuerte M, et al. Effect of correction methods of radiochromic EBT2 films on the accuracy of IMRT QA. App Radi Isot. 2016;107:121-126. https://doi.org/10.1016/j.apradiso.2015.09.01610.1016/j.apradiso.2015.09.01626492322 Search in Google Scholar

18. Schaffner B. Proton dose calculation based on in-air fluence measurements. Phys Med Biol. 2008;53(6):1545-1562. https://doi.org/10.1088/0031-9155/53/6/00310.1088/0031-9155/53/6/00318367787 Search in Google Scholar

19. Wu JM, Lee TF, Kuo CM A light field-based method to adjust rounded leaf end MLC position for split shape dose calculation correction in a radiation therapy treatment planning system. J Appl Clin Med Phys. 2012;13(6):3937. https://doi.org/10.1120/jacmp.v13i6.393710.1120/jacmp.v13i6.3937571852623149786 Search in Google Scholar

eISSN:
1898-0309
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics