Accesso libero

Comparison of three and four-field radiotherapy technique and the effect of laryngeal shield on vocal and spinal cord radiation dose in radiotherapy of non-laryngeal head and neck tumors

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Peszynska-Piorun M, Malicki J, Golusinski W. Doses in organs at risk during head and neck radiotherapy using IMRT and 3D-CRT. Radiol Oncol; 2012;46(4):328-336.10.2478/v10019-012-0050-ySearch in Google Scholar

[2] Yeh SA. Radiotherapy for Head and Neck Cancer. Semin Plast Surg. 2010; 24(2):127-136.10.1055/s-0030-1255330Search in Google Scholar

[3] Putipun Puataweepong. Advanced Radiation Therapy for Head and Neck Cancer: A New Standard of Practice. Ramathibodi Hospital, Mahidol University Thailand.Search in Google Scholar

[4] Bakiu E, Telhaj E, Kozma E, et al. Comparison of 3D CRT and IMRT Tratment Plans. Acta Inform Med. 2013;21(3):211-212.10.5455/aim.2013.21.211-212Open DOISearch in Google Scholar

[5] Molazadeh M, Saberi H, Rahmatnezhadi L, et al. Evaluation the Effect of Photon Beam Energies on Organ at Risk Doses in Three-Dimensional Conformal Radiation Therapy. Res J Appl Sci Eng Technol. 2013;6(12):2110-2117.10.19026/rjaset.6.3833Search in Google Scholar

[6] Intensity Modulated Radiation Therapy. Irsa.org. Retrieved 2012-04-20.Search in Google Scholar

[7] Herman TF, Schnell E, Young J, et al. Dosimetric comparison between IMRT delivery modes: Step-and-shoot, sliding window, and volumetric modulated arc therapy - for whole pelvis radiation therapy of intermediate-to-high risk prostate adenocarcinoma. J Med Phys. 2013;38(4):165-72.10.4103/0971-6203.121193Open DOISearch in Google Scholar

[8] Herrassi MY, Bentayeb F, Malisan MR. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer. J Med Phys. 2013;38(2):98-105.10.4103/0971-6203.111331Search in Google Scholar

[9] Fung K, Yoo J, Leeper HA, et al. Effects of head and neck radiation therapy on vocal function. J Otolaryngol. 2001;30(3):133-139.10.2310/7070.2001.20192Open DOISearch in Google Scholar

[10] Breen S, Craig T, Bayley A, et al. Spinal cord planning risk volumes for intensity-modulated radiation therapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(1):321-325.10.1016/j.ijrobp.2005.08.038Search in Google Scholar

[11] Schultheiss TE, Kun LE, Ang KK, et al. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995;31(5):1093-1112.10.1016/0360-3016(94)00655-5Open DOISearch in Google Scholar

[12] Emami B. Tolerance of Normal Tissue to Therapeutic Radiation. Rep Radiother Oncol. 2013;1(1):35-48.Search in Google Scholar

[13] Lukarski D, Krstevska V, Petkovska S. A Treatment Planning Comparison of Two Different 3D Conformal Technique for Irradiation of head and neck cancer patients, Proceedings of the Second Conference on Medical Physics and Biomedical Engineering.Search in Google Scholar

[14] Nguyen NP, Ceizyk M, Vos P, et al. Effectiveness of image-guided radiotherapy for laryngeal sparing in head and neck cancer. Oral Oncol. 2010;46(4):283-286.10.1016/j.oraloncology.2010.01.01020188620Open DOISearch in Google Scholar

[15] Hamdan A, Geara F, Rameh C, et al. Vocal changes following radiotherapy to the head and neck for non-laryngeal tumors. Eur Arch Otorhinolaryngol. 2009;266(9):1435-1439.10.1007/s00405-009-0950-7Search in Google Scholar

[16] Rancati T, Schwarz M, Allen AM. Radiation dose-volume effects in larynx and pharynx. Int J Radiat Oncol Biol Phys. 2010;76(3Suppl):S64-S69.10.1016/j.ijrobp.2009.03.079Search in Google Scholar

[17] Paulino AC, Arceci RJ. Nasopharyngeal Cancer Treatment & Management. https://emedicine.medscape.com/article/988165-treatment. 2015.Search in Google Scholar

[18] Grégoire V, de Neve W, Eisbruch A, et al. Intensity-Modulated Radiation Therapy for Head and Neck Carcinoma. Oncologist. 2007;12(5):555-564.10.1634/theoncologist.12-5-555Open DOISearch in Google Scholar

[19] Sanchez-Neito B, Nahum AE. BIOPLAN: software for the biological evaluation of radiotherapy treatment plans. Med Dosim. 2000;25(2):71-76.10.1016/S0958-3947(00)00031-5Open DOISearch in Google Scholar

[20] Kallman P, Agren A, Brahme A. Tumor and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992; 62(2):249-262.10.1080/09553009214552071Open DOISearch in Google Scholar

[21] Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123-135.10.1016/0360-3016(91)90172-ZOpen DOISearch in Google Scholar

[22] Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109-122.10.1016/0360-3016(91)90171-YOpen DOISearch in Google Scholar

[23] Jones B, Dale R. Mathematical models of tumor and normal tissue response. Acta Oncol. 1999;38(7):883-893.10.1080/028418699432572Open DOISearch in Google Scholar

[24] Rancati T, Fiorino C, Sanguineti G. NTCP modeling of sub-acute/late laryngeal edema scored by fiberopitic examination. Int J Radiat Oncol Biol Phys. 2009;75(30):915-923.10.1016/j.ijrobp.2009.04.087Search in Google Scholar

[25] Niemierko A. Goitein M. Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys. 1993;25(1):135-145.10.1016/0360-3016(93)90156-POpen DOISearch in Google Scholar

[26] Luxton G, Keall PJ King CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol. 2008;53(1):23-36.10.1088/0031-9155/53/1/00218182685Search in Google Scholar

[27] Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007;23(3-4):115-125.10.1016/j.ejmp.2007.07.00117825595Open DOISearch in Google Scholar

[28] Allen LX, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39(3):1386-1409.10.1118/1.368544722380372Search in Google Scholar

[29] Oinam AS, Singh L, Shukla A, et al. Dose volume histogram analysis and comparison of different radiobiological models using inhouse developed software. J Med Phys. 2011;36(4):220-229.10.4103/0971-6203.89971324973322228931Open DOISearch in Google Scholar

[30] Gomez D, Cahlon O, Mechalakos J, et al. An investigation of intensity modulated radiation therapy versus conventional twodimensional and 3D-conformal radiation therapy for early stage larynx cancer. Radiat Oncol. 2010;5:74.10.1186/1748-717X-5-74294077020796303Search in Google Scholar

[31] Varadharajan E, Swaminathan S, et al. Biological evaluation of 3D conformal radiotherapy and intensity modulated radiotherapy plans in different clinical situations. JIPMER Journal of cancer. 2014;3(1):35-43.Search in Google Scholar

[32] Eisbruch A, Schwarz M, Rasch C, et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: Which anatomic structures are affected and can they be spared by IMRT. Int J Radiat Oncol Biol Phys. 2004;60(5):1425-1439.10.1016/j.ijrobp.2004.05.05015590174Search in Google Scholar

[33] Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: Early dose–effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys. 2007;68(5):1289-1299.10.1016/j.ijrobp.2007.02.04917560051Open DOISearch in Google Scholar

[34] Jensen K, Lambertsen K, Grau C. Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: Frequency, intensity and correlation with dose and volume parameters. Radiother Oncol. 2007;85(1):74-82.10.1016/j.radonc.2007.06.00417673322Search in Google Scholar

[35] Caglar HB, Allen AM, Othus M, et al. Dose to the larynx predicts for swallowing complications following IMRT and chemotherapy. Int J Radiat Oncol Biol Phys. 2007;69:(Suppl. 1):S53–S54.10.1016/j.ijrobp.2007.07.098Search in Google Scholar

[36] Kristensen CA, Kjær-Kristoffersen F, Sapru W, et al. Nasopharyngeal carcinoma Treatment planning with IMRT and 3D conformal radiotherapy. Acta Oncol. 2007;46(2):214-220.10.1080/0284186060063586217453372Open DOISearch in Google Scholar

[37] Kan MW, Leung LH, Yu PK. The use of biologically related model (Eclipse) for the intensity-modulated radiation therapy planning of nasopharyngeal carcinoma. PLoS One. 2014;9(11):e112229.10.1371/journal.pone.0112229Search in Google Scholar

[38] Boughalia A, Marcie S, Fellah M, et al. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP). Br J Radiol. 2015;88(1050):20140839.10.1259/bjr.20140839Search in Google Scholar

[39] Kam MK, Chau RM, Suen J, et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation. Int J Radiat Oncol Biol Phys. 2003;56(1):145-147.10.1016/S0360-3016(03)00075-0Search in Google Scholar

[40] Moiseenko V, Battista J, Van DJ. Normal tissue complication probabilities (dependence on choice of biological model and dose-volume histogram reduction scheme). Int J Radiat Oncol Biol Phys. 2000;46(4):983-993.10.1016/S0360-3016(99)00473-3Open DOISearch in Google Scholar

eISSN:
1898-0309
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics